TAILIEUCHUNG - Báo cáo khoa học: "A Connectionist Architecture for Learning to Parse"

We present a connectionist architecture and demonstrate that it can learn syntactic parsing from a corpus of parsed text. The architecture can represent syntactic constituents, and can learn generalizations over syntactic constituents, thereby addressing the sparse data problems of previous connectionist architectures. We apply these Simple Synchrony Networks to mapping sequences of word tags to parse trees. | A Connectionist Architecture for Learning to Parse James Henderson and Peter Lane Dept of Computer Science Univ of Exeter Exeter EX4 4PT United Kingdom j Abstract We present a connectionist architecture and demonstrate that it can learn syntactic parsing from a corpus of parsed text. The architecture can represent syntactic constituents and can learn generalizations over syntactic constituents thereby addressing the sparse data problems of previous connectionist architectures. We apply these Simple Synchrony Networks to mapping sequences of word tags to parse trees. After training on parsed samples of the Brown Corpus the networks achieve precision and recall on constituents that approaches that of statistical methods for this task. 1 Introduction Connectionist networks are popular for many of the same reasons as statistical techniques. They are robust and have effective learning algorithms. They also have the advantage of learning their own internal representations so they are less constrained by the way the system designer formulates the problem. These properties and their prevalence in cognitive modeling has generated significant interest in the application of connectionist networks to natural language processing. However the results have been disappointing being limited to artificial domains and oversimplified subproblems . Elman 1991 . Many have argued that these kinds of con-nectionist networks are simply not computationally adequate for learning the complexities of real natural language . Fodor and Pylyshyn 1988 Henderson 1996 . Work on extending connectionist architectures for application to complex domains such as natural language syntax has developed a theoretically motivated technique called Temporal Synchrony Variable Binding Shastri and Ajjanagadde 1993 Henderson 1996 . TSVB allows syntactic constituency to be represented but to date there has been no empirical demonstration of how a learning algorithm can .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.