TAILIEUCHUNG - Đề thi học sinh giỏi Tỉnh lớp 12 năm học 1999 - 2000 môn Toán bảng A - Sở GD - ĐT Nghệ An

Mời các bạn tham khảo Đề thi học sinh giỏi Tỉnh lớp 12 năm học 1999 - 2000 môn Toán bảng A của Sở GD - ĐT Nghệ An sau đây để biết được cấu trúc đề thi cũng như những dạng bài chính được đưa ra trong đề đó, giúp các bạn có kế hoạch học tập và ôn thi hiệu quả. | SỎ GD ĐT NGHỆ AN Đê chính thức KỲ THI HỌC SINH GIỎI TỈNH LỚP 12 NÀM HỌC 1999 - 2000 Môn Toán - Bảng A Thời gian Ỉ80 phút không kể thời gian giao đề X xsintz sintz -1 Bài 1 Cho hàm số y -------- J-------I x 1 a .Tìm a để hàm số có cực đại cực tiểu và ycđ yct -6. a đểycđ. yct 0 Bài 2. a .Chứng minh rằng với mọi e -1 1 ta có V2 V1-X V1 2- b .Tìm các giá trị của k để phương trình sau có nghiệm sin4 X cos4 x k2 cos2 4-x Bài 3. a .Cho dãy số ữj xác định như sau 2--ỰĨ a0 2 n 1 -10 5 2 Vỉỉ 0 Tìm số hạng tổng quát an b .Cho a b c là độ dài ba cạnh của một tam giác. Xét các sốx y z thoả mãn x y z Tỉm giá trị lớn nhất của biểu thức p x y z a b c Bài 4. a . Trong mặt phẳng với hệ toạ độ Oxy cho điểm A -4 0 B 4 0 .Điểm M di động trong mặt phẳng sao cho tam giác MAB có tanV ị. Chứng minh M luông thuộc một elip cố định. b .Cho tam giác ABC. M là điểm di động trên cạnh BC. Hạ MN MQ tương ứng vuông góc và song song với AB N G AB Q E ÁC .Gọi p là hình chiếu của Q lên AB và I là tâm hình chữ nhật quỹ tích của I khi M chạy trên BC. --------HDGvàĐS Bài 1 a . a - A2tT b . sina-co Bài 2 a .Sử dụng đạo hàm b . Đưa vế tam thức bậc hai. ĐS IV 2 -. Bài 3 a .TÍnh an đoán 2 -i 1 Vĩ . Chứng minh bằng pp quy nạp. b . Đặt sin X cos Oó sin y cos 3 sin z cos J X sinx siny . sinz COSOÓ COS0 . cos v í x y z 4- a b c a b c 1 r Jr 2 .2 p èccosa cữcosp ữi C0Sx a2 b2 c2 ữsinP èsiiioộ b cos cv. a cos p c abc L abc L p a b c .Đẳng thức xảy ra khi và chỉ khi 2abc Vậy J max a2 b2 c2 2abc . . . IV Ẩ TV TT _ khi X ------A y --------B z -------c . 2 2 2 COS COSOÌ cos B cos p . cos c cos -Ỵ Bài 4 a . íị 4 i 1 16 4 b .Sử dụng pp toạ độ Trang 1 15 SỎ GD ĐT NGHỆ AN KỲ THI HỌC SINH GIỎI TỈNH LỚP 12 NAM học 1999-2000 Môn Toán - Bảng A Thời gian Ỉ80 phút không kể thời gian giao đề Đê chính thức Bài I. 1. Giải hệ phương trình 2 2 4 X y 1 x y ỵ x y x2 y2 2. Chứng minh rằng với mọi số nguyên a phương trình X4 -2001X3 2000 a X2 - 1999x a 0 không thể có 2 nghiệm

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.