TAILIEUCHUNG - Báo cáo khoa học: "Discriminative Syntactic Language Modeling for Speech Recognition"

We describe a method for discriminative training of a language model that makes use of syntactic features. We follow a reranking approach, where a baseline recogniser is used to produce 1000-best output for each acoustic input, and a second “reranking” model is then used to choose an utterance from these 1000-best lists. The reranking model makes use of syntactic features together with a parameter estimation method that is based on the perceptron algorithm. We describe experiments on the Switchboard speech recognition task. . | Discriminative Syntactic Language Modeling for Speech Recognition Michael Collins MIT CS AIL mcollins@ Brian Roark OGI OHSU roark@ Abstract We describe a method for discriminative training of a language model that makes use of syntactic features. We follow a reranking approach where a baseline recogniser is used to produce 1000-best output for each acoustic input and a second reranking model is then used to choose an utterance from these 1000-best lists. The reranking model makes use of syntactic features together with a parameter estimation method that is based on the perceptron algorithm. We describe experiments on the Switchboard speech recognition task. The syntactic features provide an additional reduction in test-set error rate beyond the model of Roark et al. 2004a Roark et al. 2004b significant at p which makes use of a discriminatively trained n-gram model giving a total reduction of over the baseline Switchboard system. 1 Introduction The predominant approach within language modeling for speech recognition has been to use an ngram language model within the source-channel or noisy-channel paradigm. The language model assigns a probability Pl w to each string w in the language the acoustic model assigns a conditional probability Pa a w to each pair a w where a is a sequence of acoustic vectors and w is a string. For a given acoustic input a the highest scoring string under the model is w arg max fi log Pl w log Pa a w 1 w where fi 0 is some value that reflects the relative importance of the language model fi is typically chosen by optimization on held-out data. In Murat Saraclar Bogazici University . tr an n-gram language model a Markov assumption is made namely that each word depends only on the previous n 1 words. The parameters of the language model are usually estimated from a large quantity of text data. See Chen and Goodman 1998 for an overview of estimation techniques for n-gram models. .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.