TAILIEUCHUNG - Báo cáo khoa học: "Evaluating the Accuracy of an Unlexicalized Statistical Parser on the PARC DepBank"

We evaluate the accuracy of an unlexicalized statistical parser, trained on 4K treebanked sentences from balanced data and tested on the PARC DepBank. We demonstrate that a parser which is competitive in accuracy (without sacrificing processing speed) can be quickly tuned without reliance on large in-domain manuallyconstructed treebanks. This makes it more practical to use statistical parsers in applications that need access to aspects of predicate-argument structure. | Evaluating the Accuracy of an Unlexicalized Statistical Parser on the PARC DepBank Ted Briscoe Computer Laboratory University of Cambridge John Carroll School of Informatics University of Sussex Abstract We evaluate the accuracy of an unlexi-calized statistical parser trained on 4K treebanked sentences from balanced data and tested on the PARC DepBank. We demonstrate that a parser which is competitive in accuracy without sacrificing processing speed can be quickly tuned without reliance on large in-domain manually-constructed treebanks. This makes it more practical to use statistical parsers in applications that need access to aspects of predicate-argument structure. The comparison of systems using DepBank is not straightforward so we extend and validate DepBank and highlight a number of representation and scoring issues for relational evaluation schemes. 1 Introduction Considerable progress has been made in accurate statistical parsing of realistic texts yielding rooted hierarchical and or relational representations of full sentences. However much of this progress has been made with systems based on large lexicalized probabilistic context-free like PCFG-like models trained on the Wall Street Journal WSJ subset of the Penn TreeBank PTB . Evaluation of these systems has been mostly in terms of the PARSEVAL scheme using tree similarity measures of labelled precision and recall and crossing bracket rate applied to section 23 of the WSJ PTB. See . Collins 1999 for detailed exposition of one such very fruitful line of research. We evaluate the comparative accuracy of an un-lexicalized statistical parser trained on a smaller treebank and tested on a subset of section 23 of the WSJ using a relational evaluation scheme. We demonstrate that a parser which is competitive in accuracy without sacrificing processing speed can be quickly developed without reliance on large in-domain manually-constructed treebanks. This makes it more practical to use statistical parsers in .

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.