TAILIEUCHUNG - Báo cáo khoa học: "Relation Extraction Using Label Propagation Based Semi-supervised Learning"

Shortage of manually labeled data is an obstacle to supervised relation extraction methods. In this paper we investigate a graph based semi-supervised learning algorithm, a label propagation (LP) algorithm, for relation extraction. It represents labeled and unlabeled examples and their distances as the nodes and the weights of edges of a graph, and tries to obtain a labeling function to satisfy two constraints: 1) it should be fixed on the labeled nodes, 2) it should be smooth on the whole graph. . | Relation Extraction Using Label Propagation Based Semi-supervised Learning Jinxiu Chen1 Donghong Ji1 Chew Lim Tan2 Zhengyu Niu1 institute for Infocomm Research 2Department of Computer Science 21 Heng Mui Keng Terrace National University of Singapore 119613 Singapore 117543 Singapore jinxiu dhji zniu @ tancl@ Abstract Shortage of manually labeled data is an obstacle to supervised relation extraction methods. In this paper we investigate a graph based semi-supervised learning algorithm a label propagation LP algorithm for relation extraction. It represents labeled and unlabeled examples and their distances as the nodes and the weights of edges of a graph and tries to obtain a labeling function to satisfy two constraints 1 it should be fixed on the labeled nodes 2 it should be smooth on the whole graph. Experiment results on the ACE corpus showed that this LP algorithm achieves better performance than SVM when only very few labeled examples are available and it also performs better than bootstrapping for the relation extraction task. 1 Introduction Relation extraction is the task of detecting and classifying relationships between two entities from text. Many machine learning methods have been proposed to address this problem . supervised learning algorithms Miller et al. 2000 Zelenko et al. 2002 Culotta and Soresen 2004 Kambhatla 2004 Zhou et al. 2005 semi-supervised learning algorithms Brin 1998 Agichtein and Gravano 2000 Zhang 2004 and unsupervised learning algorithms Hasegawa et al. 2004 . Supervised methods for relation extraction perform well on the ACE Data but they require a large amount of manually labeled relation instances. Unsupervised methods do not need the definition of relation types and manually labeled data but they cannot detect relations between entity pairs and its result cannot be directly used in many NLP tasks since there is no relation type label attached to each instance in clustering result. Considering both

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.