TAILIEUCHUNG - Báo cáo khoa học: "Model-Based Aligner Combination Using Dual Decomposition"

Unsupervised word alignment is most often modeled as a Markov process that generates a sentence f conditioned on its translation e. A similar model generating e from f will make different alignment predictions. Statistical machine translation systems combine the predictions of two directional models, typically using heuristic combination procedures like grow-diag-final. This paper presents a graphical model that embeds two directional aligners into a single model. | Model-Based Aligner Combination Using Dual Decomposition John DeNero Google Research denero@ Klaus Macherey Google Research kmach@ Abstract Unsupervised word alignment is most often modeled as a Markov process that generates a sentence f conditioned on its translation e. A similar model generating e from f will make different alignment predictions. Statistical machine translation systems combine the predictions of two directional models typically using heuristic combination procedures like grow-diag-final. This paper presents a graphical model that embeds two directional aligners into a single model. Inference can be performed via dual decomposition which reuses the efficient inference algorithms of the directional models. Our bidirectional model enforces a one-to-one phrase constraint while accounting for the uncertainty in the underlying directional models. The resulting alignments improve upon baseline combination heuristics in word-level and phrase-level evaluations. 1 Introduction Word alignment is the task of identifying corresponding words in sentence pairs. The standard approach to word alignment employs directional Markov models that align the words of a sentence f to those of its translation e such as IBM Model 4 Brown et al. 1993 or the HMM-based alignment model Vogel et al. 1996 . Machine translation systems typically combine the predictions of two directional models one which aligns f to e and the other e to f Och et al. 1999 . Combination can reduce errors and relax the one-to-many structural restriction of directional models. Common combination methods include the union or intersection of directional alignments as 420 well as heuristic interpolations between the union and intersection like grow-diag-final Koehn et al. 2003 . This paper presents a model-based alternative to aligner combination. Inference in a probabilistic model resolves the conflicting predictions of two directional models while taking into account each model s .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.