TAILIEUCHUNG - Báo cáo khoa học: "Unsupervised Argument Identification for Semantic Role Labeling"

The task of Semantic Role Labeling (SRL) is often divided into two sub-tasks: verb argument identification, and argument classification. Current SRL algorithms show lower results on the identification sub-task. Moreover, most SRL algorithms are supervised, relying on large amounts of manually created data. In this paper we present an unsupervised algorithm for identifying verb arguments, where the only type of annotation required is POS tagging. The algorithm makes use of a fully unsupervised syntactic parser, using its output in order to detect clauses and gather candidate argument collocation statistics. We evaluate our algorithm on PropBank10, achieving a precision of. | Unsupervised Argument Identification for Semantic Role Labeling Omri Abend1 Roi Reichart2 Ari Rappoport1 institute of Computer Science 2ICNC Hebrew University of Jerusalem omria011roiri arir @ Abstract The task of Semantic Role Labeling SRL is often divided into two sub-tasks verb argument identification and argument classification. Current SRL algorithms show lower results on the identification sub-task. Moreover most SRL algorithms are supervised relying on large amounts of manually created data. In this paper we present an unsupervised algorithm for identifying verb arguments where the only type of annotation required is POS tagging. The algorithm makes use of a fully unsupervised syntactic parser using its output in order to detect clauses and gather candidate argument collocation statistics. We evaluate our algorithm on PropBank10 achieving a precision of 56 as opposed to 47 of a strong baseline. We also obtain an 8 increase in precision for a Spanish corpus. This is the first paper that tackles unsupervised verb argument identification without using manually encoded rules or extensive lexical or syntactic resources. 1 Introduction Semantic Role Labeling SRL is a major NLP task providing a shallow sentence-level semantic analysis. SRL aims at identifying the relations between the predicates usually verbs in the sentence and their associated arguments. The SRL task is often viewed as consisting of two parts argument identification argid and argument classification. The former aims at identifying the arguments of a given predicate present in the sentence while the latter determines the type of relation that holds between the identified arguments and their corresponding predicates. The division into two sub-tasks is justified by the fact that they are best addressed using different feature sets Pradhan et al. 2005 . Performance in the ARGID stage is a serious bottleneck for general SRL performance since only about 81 of the arguments are identified

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.