TAILIEUCHUNG - Báo cáo khoa học: "Identifying Text Polarity Using Random Walks"

Automatically identifying the polarity of words is a very important task in Natural Language Processing. It has applications in text classification, text filtering, analysis of product review, analysis of responses to surveys, and mining online discussions. We propose a method for identifying the polarity of words. We apply a Markov random walk model to a large word relatedness graph, producing a polarity estimate for any given word. A key advantage of the model is its ability to accurately and quickly assign a polarity sign and magnitude to any word. . | Identifying Text Polarity Using Random Walks Ahmed Hassan University of Michigan Ann Arbor Ann Arbor Michigan USA hassanam@ Dragomir Radev University of Michigan Ann Arbor Ann Arbor Michigan USA radev@ Abstract Automatically identifying the polarity of words is a very important task in Natural Language Processing. It has applications in text classification text filtering analysis of product review analysis of responses to surveys and mining online discussions. We propose a method for identifying the polarity of words. We apply a Markov random walk model to a large word relatedness graph producing a polarity estimate for any given word. A key advantage of the model is its ability to accurately and quickly assign a polarity sign and magnitude to any word. The method could be used both in a semi-supervised setting where a training set of labeled words is used and in an unsupervised setting where a handful of seeds is used to define the two polarity classes. The method is experimentally tested using a manually labeled set of positive and negative words. It outperforms the state of the art methods in the semi-supervised setting. The results in the unsupervised setting is comparable to the best reported values. However the proposed method is faster and does not need a large corpus. 1 Introduction Identifying emotions and attitudes from unstructured text is a very important task in Natural Language Processing. This problem has a variety of possible applications. For example there has been a great body of work for mining product reputation on the Web Morinaga et al. 2002 Turney 2002 . Knowing the reputation of a product is very important for marketing and customer relation management Morinaga et al. 2002 . Manually handling reviews to identify reputation is a very costly and time consuming process given the overwhelming amount of reviews on the Web. A list of words with positive negative polarity is a very valuable resource for such an application. .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.