TAILIEUCHUNG - Báo cáo khoa học: "Concept-to-text Generation via Discriminative Reranking"

This paper proposes a data-driven method for concept-to-text generation, the task of automatically producing textual output from non-linguistic input. A key insight in our approach is to reduce the tasks of content selection (“what to say”) and surface realization (“how to say”) into a common parsing problem. | Concept-to-text Generation via Discriminative Reranking loannis Konstas and Mirella Lapata Institute for Language Cognition and Computation School of Informatics University of Edinburgh 10 Crichton Street Edinburgh EH8 9AB mlap@ Abstract This paper proposes a data-driven method for concept-to-text generation the task of automatically producing textual output from non-linguistic input. A key insight in our approach is to reduce the tasks of content selection what to say and surface realization how to say into a common parsing problem. We define a probabilistic context-free grammar that describes the structure of the input a corpus of database records and text describing some of them and represent it compactly as a weighted hypergraph. The hypergraph structure encodes exponentially many derivations which we rerank discriminatively using local and global features. We propose a novel decoding algorithm for finding the best scoring derivation and generating in this setting. Experimental evaluation on the ATIS domain shows that our model outperforms a competitive discriminative system both using BLEU and in a judgment elicitation study. 1 Introduction Concept-to-text generation broadly refers to the task of automatically producing textual output from non-linguistic input such as databases of records logical form and expert system knowledge bases Reiter and Dale 2000 . A variety of concept-to-text generation systems have been engineered over the years with considerable success . Dale et al. 2003 Reiter et al. 2005 Green 2006 Turner et al. 2009 . Unfortunately it is often difficult to adapt them across different domains as they rely mostly on handcrafted components. 369 In this paper we present a data-driven approach to concept-to-text generation that is domainindependent conceptually simple and flexible. Our generator learns from a set of database records and textual descriptions for some of them . An example from the air travel .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.