TAILIEUCHUNG - Báo cáo hóa học: " Research Article On Efficient Method for System of Fractional Differential Equations"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article On Efficient Method for System of Fractional Differential Equations | Hindawi Publishing Corporation Advances in Difference Equations Volume 2011 Article ID 303472 15 pages doi 2011 303472 Research Article On Efficient Method for System of Fractional Differential Equations Najeeb Alam Khan 1 Muhammad Jamil 2 3 Asmat Ara 1 and Nasir-Uddin Khan1 1 Department of Mathematics University of Karachi Karachi 75270 Pakistan 2 Abdul Salam School of Mathematical Sciences GC University Lahore Pakistan 3 Department of Mathematics NEDUET Karachi 75270 Pakistan Correspondence should be addressed to Najeeb Alam Khan njbalam@ Received 14 December 2010 Accepted 5 February 2011 Academic Editor J. J. Trujillo Copyright 2011 Najeeb Alam Khan et al. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. The present study introduces a new version of homotopy perturbation method for the solution of system of fractional-order differential equations. In this approach the solution is considered as a Taylor series expansion that converges rapidly to the nonlinear problem. The systems include fractional-order stiff system the fractional-order Genesio system and the fractional-order matrix Riccati-type differential equation. The new approximate analytical procedure depends only on two components. Comparing the methodology with some known techniques shows that the present method is relatively easy less computational and highly accurate. 1. Introduction Fractional differential equations have received considerable interest in recent years and have been extensively investigated and applied for many real problems which are modeled in different areas. One possible explanation of such unpopularity could be that there are multiple nonequivalent definitions of fractional derivatives 1 . Another difficulty is that fractional derivatives have no evident geometrical interpretation because of their .

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.