TAILIEUCHUNG - Khái niệm cây - Bài 9 Cây ôn thi

• Cây là một đồ thị định hướng thỏa mãn các tính chất sau: • Có một đỉnh đặc biệt được gọi là gốc cây • Mỗi đỉnh C bất kỳ không phải là gốc, tồn tại duy nhất một đỉnh P cung đi từ P đến C. Đỉnh P được gọi là cha của đỉnh C, và C là con P • Có đường đi duy nhất từ gốc tới mỗi đỉnh của cây. | Cây (Tree) Khái niệm cây Cây là một đồ thị định hướng thỏa mãn các tính chất sau: Có một đỉnh đặc biệt được gọi là gốc cây Mỗi đỉnh C bất kỳ không phải là gốc, tồn tại duy nhất một đỉnh P có cung đi từ P đến C. Đỉnh P được gọi là cha của đỉnh C, và C là con của P Có đường đi duy nhất từ gốc tới mỗi đỉnh của cây. Gốc Đỉnh trong Lá Cài đặt cây bằng mảng con trỏ Template class Node { Item data; List children; } Node* root; (Xem hình vẽ) A B D C E F G root Cài đặt cây bằng hai con trỏ template class Node { Item data; Node* firstChild; Node* nextSibling; }; Node* root; A B C D G F E root Duyệt cây Duyệt cây theo thứ tự trước Thăm gốc r. Duyệt lần lượt các cây con T1,., Tk theo thứ tự trước A B E F C D G Duyệt cây theo thứ tự trước Template Preorder (Node* root) { visit (root); for each child r do Preorder (r); } Duyệt cây theo thứ tự sau Duyệt lần lượt các cây con T1,., Tk theo thứ tự sau Thăm gốc r. E F B C G D A Duyệt cây theo thứ tự sau Template Postorder (Node* root) { for each child r do Postorder (r); visit (root); } Cây nhị phân template Class Node { Item data; // Dữ liệu chứa trong mỗi đỉnh Node* left; Node* right; }; Các kiểu cây nhị phân Cây nhị phân đầy đủ Cây nhị phân cân bằng: Độ cao cây con bến trái và bên phải chênh nhau không quá một Problem Bài toán: Cho một danh sách các đối tượng, hãy tổ chức cấu trúc dữ liệu để thực hiện các phép toán dưới đây một cách hiệu quả: Tìm kiếm (search) Thêm vào (insert) Xóa đi (delete) Đáp án: Dùng cấu trúc cây tìm kiếm nhị phân Cây tìm kiếm nhị phân Cây nhị phân rỗng là cây tìm kiếm nhị phân Cây nhị phân không rỗng T là cây tìm kiếm nhị phân nếu: Khóa của gốc lớn hơn khóa của tất cả các đỉnh ở cây con trái TL và nhỏ hơn khóa của tất cả các đỉnh ở cây con phải TR Cây con trái TL và cây con phải TR là các cây tìm kiếm nhị phân. Phép toán tìm kiếm (search) binarySearchTree (Node* root, lookingData) { if (Root == NULL) return NULL; else if

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.