TAILIEUCHUNG - Đề tài " Y-systems and generalized associahedra "

To the memory of Rodica Simion The goals of this paper are two-fold. First, we prove, for an arbitrary finite root system Φ, the periodicity conjecture of Al. B. Zamolodchikov [24] that concerns Y -systems, a particular class of functional relations playing an important role in the theory of thermodynamic Bethe ansatz. Algebraically, Y -systems can be viewed as families of rational functions defined by certain birational recurrences formulated in terms of the root system Φ. We obtain explicit formulas for these rational functions, which always turn out to be Laurent polynomials, and prove that they exhibit the periodicity. | Annals of Mathematics F-systems and generalized associahedra By Sergey Fomin and Andrei Zelevinsky Annals of Mathematics 158 2003 977-1018 Y-systems and generalized associahedra By Sergey Fomin and Andrei Zelevinsky To the memory of Rodica Simion The goals of this paper are two-fold. First we prove for an arbitrary finite root system T the periodicity conjecture of Al. B. Zamolodchikov 24 that concerns Y-systems a particular class of functional relations playing an important role in the theory of thermodynamic Bethe ansatz. Algebraically Y-systems can be viewed as families of rational functions defined by certain birational recurrences formulated in terms of the root system T. We obtain explicit formulas for these rational functions which always turn out to be Laurent polynomials and prove that they exhibit the periodicity property conjectured by Zamolodchikov. In a closely related development we introduce and study a simplicial complex A T which can be viewed as a generalization of the Stasheff polytope also known as associahedron for an arbitrary root system T. In type A this complex is the face complex of the ordinary associahedron whereas in type B our construction produces the Bott-Taubes polytope or cyclohedron. We enumerate the faces of the complex A T prove that its geometric realization is always a sphere and describe it in concrete combinatorial terms for the classical types ABCD. The primary motivation for this investigation came from the theory of cluster algebras introduced in 9 as a device for studying dual canonical bases and total positivity in semisimple Lie groups. This connection remains behind the scenes in the text of this paper and will be brought to light in a forthcoming sequel 1 to 9 . Contents 1. Main results 2. Y -systems . Root system preliminaries Research supported in part by NSF grants DMS-0070685 . and DMS-9971362 . . 1 Added in proof. See S. Fomin and A. Zelevinsky Cluster algebras II Finite type classification Invent. .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.