TAILIEUCHUNG - Báo cáo khoa hoc:" Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành y học dành cho các bạn tham khảo đề tài: Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors | Arjunan and Kumar Journal of NeuroEngineering and Rehabilitation 2010 7 53 http content 7 1 53 l dl JOURNAL OF NEUROENGINEERING NCR AND REHABILITATION RESEARCH Open Access Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors Sridhar Poosapadi Arjunan Dinesh Kant Kumar Abstract Background Identifying finger and wrist flexion based actions using a single channel surface electromyogram sEMG can lead to a number of applications such as sEMG based controllers for near elbow amputees human computer interface HCI devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion overcoming the earlier shortcomings. Methods SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square RMS Mean absolute value MAV Variance VAR and Waveform length WL and the proposed fractal features fractal dimension FD and maximum fractal length MFL were computed. Multi-variant analysis of variance MANOVA was conducted to determine the p value indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network ANN classifier to decode the desired subtle movements. Results The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was while that

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.