TAILIEUCHUNG - Giải và biện luận phương trình vô tỷ

Tham khảo tài liệu 'giải và biện luận phương trình vô tỷ', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | c. GIẢI VÀ BIỆN HẬN 1 IH ÕNG TRÌNH CHỨA CĂN THỨC I. KIẾN THỨC CẦN NHỚ. 1. Cách giải cũng giông như giải biên luân các phương trình khác. Nói chung ta phải giải quyết 3 vấn đề Điều kiện có nghiệm Có bao nhiêu nghiệm Nghiệm số bằng bao nhiêu. Giả sử xét phương trình a à B 1 B 0 2 A B2 3 Bước 1 Giải phương trình 3 . Điều kiện có nghiệm của 3 và sô nghiệm. Bước 2 Chọn nghiệm thỏa điều kiện 2 có nhiều cách tổng quát ta có thể thế từng nghiệm của 2 vào 1 để được điều kiện nhận nghiệm đó. Sau cùng ta phải tổng hợp các nghiệm trên. 2. Biên luân số nghiêm của phương trình Nếu phương trình có dạng f x k với k không phụ thuộc vào x ta giải bằng khảo sát hàm. II. CÁC VÍ DỤ. Ví du 1 Cho phương trình s x2 -2x m2 x -1 - m 1 1. Giải phương trình 1 với m 2 2. Giải và biện luận phương trình 1 theo m. ĐH Quốc Gia TPHCM năm 1996 . Giải 2 1 0 a x2 -2x 4 x-1 -2 2 143 . Xét X 1 X -1 0 ----- _ ix-3 0 2 Vx2-2x 4 x-3 9 x2-2x 4 x-3 2 r. ix 3 4x 5 x 3 x 4 . XétX 1 X-1 0 _ _ 2 _ i-x -1 0 2 oVx2-2x 4 -x-lo x2-2x 4 x l 2 X 1 o 3 . Tóm lại phương trình cho vô nghiệm . x - loại 2. Xét X 1 1 o -ựx2 -2x m2 X -1 - m x-l-m 0 Jx l m x2-2x m2 x-l-m 2 2mx 2m l 3 Nêu m 0 3 VN Nếu m 0 3 ó X 2m l 2m . 2m 1 . -2m2 1 . vì X 1 m o - 1 m o - 2m 2m 5 2 _ 5 2 v 2m 1 o m V 0 m vì X 1 -- 2 2 2m n _ 2m 1 Vậy 0 m nhận nghiệm X 2 2m 5 2 Khi m 0 V m vô nghiệm . Xét X 1 l Ọ íx2 -2x m2 1-x - m íx2 -2x m2 1 - X - m 2 Í2mx 2m -1 Nếu m 0 4 VN 4 144 Nếu m 0 4 o X - 2m 2m2-l 2m 0 2m 1 1 z Vì X 1 - m o -- 1 - m 2m ựộ 5 2 Om vO m 2 2 z I 2m-l 1 Vì X 1 o - 1Q 2m 2m Khi 0 m nghiệm X -- 2 2m Khi m 0 V m VN. 2 Tóm lại z 5 2 . 2m 1 2m -1 0 m nghiệm x - x --------- 2 2m 2m 5 2 m 0 V n VN 2 Ví du 2 Giải và biện luận theo tham số m phương trình sau 1 1 - -Tin l y m z .x X 1 Vm l-Vm CAO ĐẲNG HẢI QUAN NĂM 1997 Giải Điều kiện X 0 m 0 m 1. . . 1 1 1 m X 1 -m X o 1 -m x2 A l m 2 - 1 m x 1 - m 0 - 1-m 2 -3m2 10m-3 A 0om 3vm 3 . Neu y m 3 VN 145 . Nếu 0 m 2-vm 3 có2 nghiệm 1 m x -3m2 3 ÍOm - 3 X ------------------- 1 -m .m 3 Xi x2 - 1

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.