TAILIEUCHUNG - Đề tài " Minimal p-divisible groups "

A p-divisible group X can be seen as a tower of building blocks, each of which is isomorphic to the same finite group scheme X[p]. Clearly, if X1 and X2 are isomorphic then X1 [p] ∼ X2 [p]; however, conversely X1 [p] ∼ X2 [p] does = = in general not imply that X1 and X2 are isomorphic. Can we give, over an algebraically closed field in characteristic p, a condition on the p-kernels which ensures this converse? Here are two known examples of such a condition: consider the case that X is ordinary, or the case that X. | Annals of Mathematics Minimal p-divisible groups By Frans Oort Annals of Mathematics 161 2005 1021 1036 Minimal p-divisible groups By Frans Oort Introduction A p-divisible group X can be seen as a tower of building blocks each of which is isomorphic to the same finite group scheme X p . Clearly if X1 and X2 are isomorphic then X1 p X2 p however conversely X1 p X2 p does in general not imply that X1 and X2 are isomorphic. Can we give over an algebraically closed field in characteristic p a condition on the p-kernels which ensures this converse Here are two known examples of such a condition consider the case that X is ordinary or the case that X is superspecial X is the p-divisible group of a product of supersingular elliptic curves in these cases the p-kernel uniquely determines X . These are special cases of a surprisingly complete and simple answer If G is minimal then X1 p G X2 p implies X1 X2 see for a definition of minimal see . This is necessary and sufficient in the sense that for any G that is not minimal there exist infinitely many mutually nonisomorphic p-divisible groups with p-kernel isomorphic to G see . Remark motivation . You might wonder why this is interesting. EO. In 7 we defined a natural stratification of the moduli space of polarized abelian varieties in positive characteristic moduli points are in the same stratum if and only if the corresponding p-kernels are geometrically isomorphic. Such strata are called EO-strata. Fol. In 8 we define in the same moduli spaces a foliation Moduli points are in the same leaf if and only if the corresponding p-divisible groups are geometrically isomorphic in this way we obtain a foliation of every open Newton polygon stratum. Fol c EO. The observation X Y X p Y p shows that any leaf in the second sense is contained in precisely one stratum in the first sense the main result of this paper X is minimal if and only if X p is minimal 1022 FRANS OORT shows that a stratum in the first sense and a leaf .

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.