TAILIEUCHUNG - Đề tài " The uniqueness of the helicoid "

In this paper we will discuss the geometry of finite topology properly embedded minimal surfaces M in R3 . M of finite topology means M is homeomorphic to a compact surface M (of genus k and empty boundary) minus a finite number of points p1 , ., pj ∈ M , called the punctures. A closed neighborhood E of a puncture in M is called an end of M . We will choose the ends sufficiently small so they are topologically S 1 × [0, 1) and hence, annular. We remark that M is orientable since M is properly. | Annals of Mathematics The uniqueness of the helicoid By William H. Meeks IIIn and Harold Rosenberg Annals of Mathematics 161 2005 727 758 The uniqueness of the helicoid By William H. Meeks III and Harold Rosenberg In this paper we will discuss the geometry of finite topology properly embedded minimal surfaces M in R3. M of finite topology means M is homeomorphic to a compact surface M of genus k and empty boundary minus a finite number of points p1 . pj G M called the punctures. A closed neighborhood E of a puncture in M is called an end of M. We will choose the ends sufficiently small so they are topologically S 1 X 0 1 and hence annular. We remark that M is orientable since M is properly embedded in R3. The simplest examples discovered by Meusnier in 1776 are the helicoid and catenoid and a plane of course . It was only in 1982 that another example was discovered. In his thesis at Impa Celso Costa wrote down the Weierstrass representation of a complete minimal surface modelled on a 3-punctured torus. He observed the three ends of this surface were embedded one top catenoid-type end1 one bottom catenoid-type end and a middle planar-type end2 8 . Subsequently Hoffman and Meeks 15 proved this example is embedded and they constructed for every finite positive genus k embedded examples of genus k and three ends. In 1993 Hoffman Karcher and Wei 14 discovered the Weierstrass data of a complete minimal surface of genus one and one annular end. Computer generated pictures suggested this surface is embedded and the end is asymptotic to an end of a helicoid. Hoffman Weber and Wolf 17 have now given a proof that there is such an embedded surface. Moreover computer evidence suggests that one can add an arbitrary finite number k of handles to a helicoid to obtain a properly embedded genus k minimal surface asymptotic to a helicoid. For many years the search went on for simply connected examples other than the plane and helicoid. We shall prove that there are no such examples.

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.