TAILIEUCHUNG - Đề tài " The derivation problem for group algebras "

If G is a locally compact group, then for each derivation D from L1 (G) into L1 (G) there is a bounded measure μ ∈ M (G) with D(a) = a ∗ μ − μ ∗ a for a ∈ L1 (G) (“derivation problem” of B. E. Johnson). Introduction Let A be a Banach algebra, E an A-bimodule. A linear mapping D : A → E is called a derivation, if D(a b) = a D(b) + D(a) b for all a, b ∈ A ([D, Def. ]). For x ∈ E, we define the inner derivation adx :. | Annals of Mathematics The derivation problem for group algebras By Viktor Losert Annals of Mathematics 168 2008 221-246 The derivation problem for group algebras By Viktor Losert Abstract If G is a locally compact group then for each derivation D from L1 G into L1 G there is a bounded measure ạ E M G with D a a ạ ạ a for a E L1 G derivation problem of B. E. Johnson . Introduction Let A be a Banach algebra E an A-bimodule. A linear mapping D A E is called a derivation if D ab aD b D a b for all a b E A D Def. . For x E E we define the inner derivation adx A - E by adx a xa ax as in GRW adx ỗx in the notation of D . If G is a locally compact group we consider the group algebra A L1 G and E M G with convolution note that by Wendel s theorem D Th. M G is isomorphic to the multiplier algebra of L1 G and also to the left multiplier algebra . The derivation problem asks whether all derivations are inner in this case D Question p. 746 . The question goes back to J. H. Williamson around 1965 personal communication by H. G. Dales . The corresponding problem when A E is a von Neumann algebra was settled affirmatively by Sakai Sa using earlier work of Kadison see D p. 761 for further references . The derivation problem for the group algebra is linked to the name of B. E. Johnson who pursued it over the years as a pertinent example in his theory of cohomology in Banach algebras. He developed various techniques and gave affirmative answers in a number of important special cases. As an immediate consequence of the factorization theorem the image of a derivation from L1 G to M G is always contained in L1 G . In JS with A. Sinclair it was shown that derivations on L1 G are automatically continuous. In JR with J. R. Ringrose the case of discrete groups G was settled affirmatively. In J1 Prop. this was extended to SIN-groups and amenable groups serving also as a starting point to the theory of amenable Banach algebras . In addition some cases of .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.