TAILIEUCHUNG - Đề tài " Whitney’s extension problem for Cm "

Let f be a real-valued function on a compact set in Rn , and let m be a positive integer. We show how to decide whether f extends to a Cm function on Rn . Introduction Continuing from [F2], we answer the following question (“Whitney’s extension problem”; see [hW2]). Question 1. Let ϕ be a real-valued function defined on a compact subset E of Rn . How can we tell whether there exists F ∈ C m (Rn ) with F = ϕ on E? Here, m ≥ 1 is given, and C m (Rn ) denotes the space. | Annals of Mathematics Whitney s extension problem for Cm By Charles Fefferman Annals of Mathematics 164 2006 313 359 Whitney s extension problem for Cm By Charles Fefferman Dedicated to Julie Abstract Let f be a real-valued function on a compact set in Rn and let m be a positive integer. We show how to decide whether f extends to a Cm function on Rn. Introduction Continuing from F2 we answer the following question Whitney s extension problem see hW2 . Question 1. Let p be a real-valued function defined on a compact subset E of Rn. How can we tell whether there exists F E Cm Rn with F p on E Here m 1 is given and Cm Rn denotes the space of real-valued functions on Rn whose derivatives through order m are continuous and bounded on Rn. We fix m n 1 throughout this paper. We write Rx for the ring of m-jets of functions at x E Rn and we write Jx F for the m-jet of the function F at x. As a vector space Rx is identified with P the vector space of real mth degree polynomials on Rn and Jx F is identified with the Taylor polynomial 52 F x y - J . Ị0Ị m We answer also the following refinement of Question 1. Question 2. Let p and E be as in Question 1. Fix x E E and P E Rx. How can we tell whether there exists F E Cm Rn with F p on E and Ji F P In particular we ask which m-jets at x can arise as the jet of a Cm function vanishing on E. This is equivalent to determining the Zariski paratangent space from Bierstone-Milman-Pawlucki BMP1 . Supported by Grant No. DMS-0245242. 314 CHARLES FEFFERMAN A variant of Question 1 replaces C R by Cm w Rra the space of Cm functions whose mth derivatives have a given modulus of continuity w. This variant is well-understood thanks to Brudnyi and Shvartsman B BS1 2 3 4 S1 2 3 and my own papers F1 2 4 . See also Zobin Z1 2 for a related problem. In particular F2 F4 broaden the issue by answering the following. Question 3. Suppose we are given a modulus of continuity w an arbitrary subset E c Rra and functions p E R ơ E 0 to . How can we tell .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.