TAILIEUCHUNG - Đề tài " Integrality of a ratio of Petersson norms and level-lowering congruences "

To Bidisha and Ananya Abstract We prove integrality of the ratio f, f / g, g (outside an explicit finite set of primes), where g is an arithmetically normalized holomorphic newform on a Shimura curve, f is a normalized Hecke eigenform on GL(2) with the same Hecke eigenvalues as g and , denotes the Petersson inner product. The primes dividing this ratio are shown to be closely related to certain level-lowering congruences satisfied by f and to the central values of a family of Rankin-Selberg L-functions. Finally we give two applications, the first to proving the integrality of a. | Annals of Mathematics Integrality of a ratio of Petersson norms and level-lowering congruences By Kartik Prasanna Annals of Mathematics 163 2006 901 967 Integrality of a ratio of Petersson norms and level-lowering congruences By Kartik Prasanna To Bidisha and Ananya Abstract We prove integrality of the ratio J f g g outside an explicit finite set of primes where g is an arithmetically normalized holomorphic newform on a Shimura curve f is a normalized Hecke eigenform on GL 2 with the same Hecke eigenvalues as g and denotes the Petersson inner product. The primes dividing this ratio are shown to be closely related to certain level-lowering congruences satisfied by f and to the central values of a family of Rankin-Selberg L-functions. Finally we give two applications the first to proving the integrality of a certain triple product L-value and the second to the computation of the Faltings height of Jacobians of Shimura curves. Introduction An important problem emphasized in several papers of Shimura is the study of period relations between modular forms on different Shimura varieties. In a series of articles see for . 34 35 36 he showed that the study of algebraicity of period ratios is intimately related to two other fascinating themes in the theory of automorphic forms namely the arithmeticity of the theta correspondence and the theory of special values of L-functions. Shimura s work on the theta correspondence was later extended to other situations by Harris-Kudla and Harris who in certain cases even demonstrate rationality of theta lifts over specified number fields. For instance the articles 12 13 study rationality of the theta correspondence for unitary groups and explain its relation on the one hand to period relations for automorphic forms on unitary groups of different signature and on the other to Deligne s conjecture on critical values of L-functions attached to motives that occur in the cohomology of the associated Shimura varieties. To understand these

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.