TAILIEUCHUNG - Đại số sơ cấp - Phương trình, bất phương trình vô tỉ

Tham khảo tài liệu 'đại số sơ cấp - phương trình, bất phương trình vô tỉ', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Bài 26. Cho bất phương trình x 2 x 4 x2 6x 10 m. Tìm các giá trị của m để bất phương trình nghiệm đúng với Vx R. Bài 27. Cho bất phương trình 2cos2x 3mcosx 1 0. Tìm các giá trị của m để bất phương trình nghiệm đúng với Vx 0 n . Bài 28. Cho bất phương trình 2 . 1 _ 1 _ _ x 2 2m 3 x 2 m 2 0. x x Tìm các giá trị của m để bất phương trình nghiệm đúng với Vx 0. Bài 29. Cho bất phương trình x3 - 2m 1 x2 3 m 4 x - m -12 0. Tìm các giá trị của m để bất phương trình nghiệm đúng với Vx 1. Bài 30. Cho bất phương trình x -1 x 1 x 3 x 5 m. Tìm các giá trị của m để bất phương trình nghiệm đúng với Vx -1. Bài 31. Cho bất phương trình x x - 2 x 2 x 4 2m. Tìm các giá trị của m để bất phương trình có nghiệm x 0. Bài 32. Chứng minh rằng phương trình 4x 4x2 1 1 có đúng ba nghiệm phân biệt. CHƯƠNG IV. PHƯƠNG TRÌNH BẤT PHƯƠNG TRÌNH VÔ TỈ 1. PHƯƠNG TRÌNH VÔ TỈ 1. Định nghĩa và các định lý . Định nghĩa Ta gọi phương trình vô tỉ mọi phương trình có chứa ẩn dưới dấu căn hay nói khác đi đó là phương trình dạng f x 0 trong đó f x là một hàm số có chứa căn thức của biến số. . Các định lý. Các định lý sau làm cơ sở cho việc giải phương trình vô tỉ . . Định lý. f x g x f x 2A 1 g x 2A 1 . Định lý. 2kf g x f x g x 2k 1 . Định lý. 2 k 1f x 2 k fg x f x g x 116 . Định lý. 2fx g x g x 0 i l f x g x 2k 1 M 2kỉ77 - 2 7777 f x 0 v g x 0 . Định lý. Wf x 2kg x i v v I f x g x Với k là số tự nhiên khác 0 . Việc chứng minh các định lý trên hết sức dễ dàng nhờ tính chất của lũy thừa và căn thức. Chúng tôi dành cho bạn đọc. 2. Các phương pháp giải phương trình vô tỉ . Phương pháp nâng lên lũy thừa Ví dụ 1. Giải phương trình Jx 3 3x -1 1 Giải. 1 3 x 1 i 3x2 - 7 x - 2 0 x 1 3 i x 1 x 1 2 9 Vậy phương trình có một nghiệm là x 1. Ví dụ 2. Giải phương trình x 3 -yj 7 x yj 2 x 8 Giải. Để các căn bậc hai có nghĩa ta phải có điều kiện 2 x - 8 0 7 - x 0 4 x 7. x 3 0 Ta có yỊx 3 -yỊ7 - x V2x-8 yj 2 x - 8 V 7 - x x 3 2x - 8 2ự 2x - 8 7 - x 7 - x x 3 yl 2 x - 8 7 - x 2 117 2x - 8 7 - x

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.