TAILIEUCHUNG - Báo cáo toán học: "Extremal problems for t-partite and t-colorable hypergraphs"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Extremal problems for t-partite and t-colorable hypergraphs. | Extremal problems for t-partite and t-colorable hypergraphs Dhruv Mubayi John Talboty Submitted Aug 23 2007 Accepted Jan 20 2008 Published Feb 4 2008 Mathematics Subject Classification 05D05 Abstract Fix integers t r 2 and an r-uniform hypergraph F. We prove that the maximum number of edges in a t-partite r-uniform hypergraph on n vertices that contains no copy of F is ct Fp o nr where ct F can be determined by a finite computation. We explicitly define a sequence F1 F2 . of r-uniform hypergraphs and prove that the maximum number of edges in a t-chromatic r-uniform hypergraph on n vertices containing no copy of Fi is at r i r o nr where at r i can be determined by a hnite computation for each i 1. In several cases at r i is irrational. The main tool used in the proofs is the Lagrangian of a hypergraph. 1 Introduction An r-uniform hypergraph or r-graph is a pair G V E of vertices V and edges E c Ỵ in particular a 2-graph is a graph. We denote an edge v15 v2 vrg by v1v2 vr. Given r-graphs F and G we say that G is F-free if G does not contain a copy of F. The maximum number of edges in an F-free r-graph of order n is ex n F . For r 2 and F Ks s 3 this number was determined by Turán T41 earlier Mantel M07 found ex n K3 . However in general even for r 2 the problem of determining the exact value of ex n F is beyond current methods. The corresponding asymptotic problem is to determine the Turan density of F defined by f F limn 1 eX F this always exists by a simple averaging argument due to Katona et al. KNS64 . For 2-graphs the Turán Department of Mathematics Statistics and Computer Science University of Illinois Chicago IL 60607 and Department of Mathematical Sciences Carnegie-Mellon University Pittsburgh PA 15213. Email mubayi@. Research supported in part by NSF grants DMS-0400812 and 0653946 and an Alfred P. Sloan Research Fellowship. yDepartment of Mathematics UCL London WC1E 6BT UK. Email talbot@. This author is a Royal Society University .

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
8    170    3    06-01-2025
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.