TAILIEUCHUNG - Báo cáo khoa học:Bounds on the Tur´n density of PG(3, 2) a

For n 2, let PG(n, 2) be the finite projective geometry of dimension n over F2, the field of order 2. The elements or points of PG(n, 2) are the one-dimensional vector subspaces of Fn+1 2 ; the lines of PG(n, 2) are the two-dimensional vector subspaces of Fn+1 2 . Each such one-dimensional subspace {0, x} is represented by the non-zero vector x contained in it. For ease of notation, if {e0, e1, . . . , en} is a basis of Fn+1 2 and x is an element of PG(n, 2), then we denote x by a1 . . .as, where x = ea1 +·. | Bounds on the Turan density of PG 3 2 Sebastian M. Cioaba Department of Mathematics Queen s University Kingston Canada sebi@ Submitted Oct 27 2003 Accepted Feb 18 2004 Published Mar 5 2004 MR Subject Classifications 05C35 05D05 Abstract We prove that the Turan density of PG 3 2 is at least 37 and at most 27 . . 1 Introduction For n 2 let PG n 2 be the finite projective geometry of dimension n over F2 the field of order 2. The elements or points of PG n 2 are the one-dimensional vector subspaces of Fn 1 the lines of PG n 2 are the two-dimensional vector subspaces of Fn 1. Each such one-dimensional subspace 0 x is represented by the non-zero vector x contained in it. For ease of notation if e0 e1 . en is a basis of Fn 1 and x is an element of PG n 2 then we denote x by a1. .as where x eai eas is the unique expansion of x in the given basis. For example the element x e0 e2 e3 is denoted 023. For an r-uniform hypergraph F the Turan number ex n F is the maximum number of edges in an r-uniform hypergraph with n vertices not containing a copy of F. The Turan density of an r_l 1 1 1 tnrm II A 1TA lit .i Illi ì ic Trí í 1 - 1 1 111 eX n -X Ạ Q_11 1 1 I ll1 111 1 A1TA I l lil li Till ỈỮ -ill ll 1 1 I I 1I uniiorm hypergraph F is n linin_ 0 Jn . JA 3 uniform hypergraph is also called a triple system. The points and the lines of PG n 2 form a triple system Hn with vertex set V Hn Fn 1 0 and edge set E Hn xyz x y z E V Hn x y z 0 . The Turan number density of PG n 2 is the Turan number density of Hn. It was proved in 1 that the Turan density of PG 2 2 also known as the Fano plane is 4. The exact Turan number of the Fano plane was later determined for n sufficiently large it is ex n PG 2 2 n - L3J f3 This result was proved simultaneously and independently in 2 and 4 . In the following sections we present bounds on the Turan density of PG 3 2 . THE ELECTRONIC JOURNAL OF COMBINATORICS 11 2004 N3 1 2 A lower bound Let G be the triple system on n 1

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.