TAILIEUCHUNG - Báo cáo khoa học: The restricted arc-width of a graph

An arc-representation of a graph is a function mapping each vertex in the graph to an arc on the unit circle in such a way that adjacent vertices are mapped to intersecting arcs. The width of such a representation is the maximum number of arcs passing through a single point. The arc-width of a graph is defined to be the minimum width over all of its arc-representations. We extend the work of Bar´at and Hajnal on this subject and develop a generalization we call restricted arcwidth. Our main results revolve around using this to bound arc-width from below and to examine the effect of several graph operations. | The restricted arc-width of a graph David Arthur Department of Mathematics Duke University Durham NC 27708 USA Submitted Jun 26 2003 Accepted Oct 13 2003 Published Oct 23 2003 MR Subject Classifications 05C62 05C83 Abstract An arc-representation of a graph is a function mapping each vertex in the graph to an arc on the unit circle in such a way that adjacent vertices are mapped to intersecting arcs. The width of such a representation is the maximum number of arcs passing through a single point. The arc-width of a graph is defined to be the minimum width over all of its arc-representations. We extend the work of Barat and Hajnal on this subject and develop a generalization we call restricted arcwidth. Our main results revolve around using this to bound arc-width from below and to examine the effect of several graph operations on arc-width. In particular we completely describe the effect of disjoint unions and wedge sums while providing tight bounds on the effect of cones. 1 Introduction The notion of a graph s path-width first arose in connection with the Graph Minors project where Robertson and Seymour 3 introduced it as their first minor-monotone parameter. Since then applications have arisen in the study of chromatic numbers circuit layout and natural language processing. More recently Barát and Hajnal 2 proposed a variant on path-width that leads to the analagous concept of arc-width. Although it has not been as widely studied as path-width arc-width has similar applications and is an interesting and challenging problem in its own right. Informally we define an arc-representation of a graph to be a function mapping each vertex in the graph to an arc on the unit circle in such a way that adjacent vertices are mapped to intersecting arcs. The width of such a representation is the maximum number of arcs passing through a point. The arc-width of a graph is then defined to be the minimum width over all of its arc-representations. We illustrate .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.