TAILIEUCHUNG - Project Gutenberg’s Researches on curves of the second order, by George Whitehead Hearn

Project Gutenberg’s Researches on curves of the second order, by George Whitehead Hearn This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at Title: Researches on curves of the second order Author: George Whitehead Hearn Release Date: December 1, 2005 | Project Gutenberg s Researches on curves of the second order by George Whitehead Hearn This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at Title Researches on curves of the second order Author George Whitehead Hearn Release Date December 1 2005 EBook 17204 Language English Character set encoding TeX START OF THIS PROJECT GUTENBERG EBOOK RESEARCHES ON CURVES Produced by Joshua Hutchinson Jim Land and the Online Distributed Proofreading Team at http . This file was produced from images from the Cornell University Library Historical Mathematics Monographs collection. RESEARCHES ON CURVES OF THE SECOND ORDER ALSO ON Cones and Spherical Conics treated Analytically IN WHICH THE TANGENCIES OF APOLLONIUS ARE INVESTIGATED AND GENERAL GEOMETRICAL CONSTRUCTIONS DEDUCED FROM ANALYSIS ALSO SEVERAL OF THE GEOMETRICAL CONCLUSIONS OF M. CHASLES ARE ANALYTICALLY RESOLVED TOGETHER WITH MANY PROPERTIES ENTIRELY ORIGINAL. By GEORGE WHITEHEAD HEARN A GRADUATE OF CAMBRIDGE AND A PROFESSOR OF MATHEMATICS IN THE ROyAL MILITARy COLLEGE SANDHURST. LONDON GEORGE BELL 186 FLEET STREET. MDCCCxLVI. Table of Contents PREFACE. 1 INTRODUCTORY DISCOURSE CONCERNING GEOMETRY. . 2 CHAPTER I. 6 Problem proposed by Cramer to Castillon. 6 Tangencies of Apollonius. 10 Curious property respecting the directions of hyperbola which are the loci of centres of circles touching each pair of three circles. 15 CHAPTER II. 17 Locus of centres of all conic sections through same four points . 18 Locus of centres of all conic sections through two given points and touching a given line in a given point. 18 Locus of centres of all conic sections passing through three given points and touching a given straight line . 19 Equation to a conic section touching three given straight lines . 19 Equation to a conic section .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.