TAILIEUCHUNG - Đề ôn thi học kỳ 2 môn toán lớp 11 - Đề số 7
Tham khảo tài liệu đề ôn thi học kỳ 2 môn toán lớp 11 - đề số 7 , tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Đề số 7 ĐỀ ÔN TẬP HỌC KÌ 2 – Năm học Môn TOÁN Lớp 11 Thời gian làm bài 90 phút I. PHẦN BẮT BUỘC: Câu 1: Tính các giới hạn sau: a) b) Câu 2 (1 điểm): Cho hàm số Xét tính liên tục của hàm số tại Câu 3 (1 điểm): Chứng minh rằng phương trình sau có ít nhất một nghiệm trên [0; 1]: . Câu 4 (1,5 điểm): Tính đạo hàm của các hàm số sau: a) b) Câu 5 (2,5 điểm) : Cho hình chóp có đáy ABCD là hình thoi tâm O cạnh a, , đường cao SO = a. a) Gọi K là hình chiếu của O lên BC. Chứng minh rằng: BC (SOK) b) Tính góc giữa SK và mp(ABCD). c) Tính khoảng cách giữa AD và SB. II. PHẦN TỰ CHỌN 1. Theo chương trình chuẩn Câu 6a (1,5 điểm): Cho hàm số: (C). a) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = 2. b) Viết phương trình tiếp tuyến của đồ thị (C) có hệ số góc k = –1. Câu 7a (1,5 điểm): Cho hình chóp tam giác có đáy ABC là tam giác đều, SA (ABC), SA= a. M là một điểm trên cạnh AB, , hạ SH CM. a) Tìm quỹ tích điểm H khi M di động trên đoạn AB. b) Hạ AK SH. Tính SK và AH theo a và . 2. Theo chương trình nâng cao Câu 6b (1,5 điểm): Cho các đồ thị (P): và (C): . a) Chứng minh rằng (P) tiếp xúc với (C). b) Viết phương trình tiếp tuyến chung của (P) và (C) tại tiếp điểm. Câu 7b (1,5 điểm): Cho hình chóp có đáy ABCD là hình vuông tâm O, cạnh a; SA = SB = SC = SD = . Gọi I và J lần lượt là trung điểm BC và AD. a) Chứng minh rằng: SO (ABCD). b) Chứng minh rằng: (SIJ) (ABCD). Xác định góc giữa (SIJ) và (SBC). c) Tính khoảng cách từ O đến (SBC). --------------------Hết------------------- Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . Đề số 7 ĐÁP ÁN ĐỀ ÔN TẬP HỌC KÌ 2 – Năm học Môn TOÁN Lớp 11 Thời gian làm bài 90 phút Câu 1: a) b) Câu 2: = Tại ta có: , liên tục tại Câu 3: Xét hàm số liên tục trên R. PT đã cho có ít nhất một nghiệm thuộc khoảng . Câu 4: a) b) Câu 5: a) AB = AD = a, EMBED đều BC OK, BC SO BC (SOK). b) Tính góc của SK và mp(ABCD) SO (ABCD) có c) Tính khoảng cách giữa AD và SB AD // BC AD // (SBC) Vẽ OF SK OF (SBC) Vẽ AH // OF, H CF AH (SBC) . CAH có OF là đường trung bình nên AH = SOK có OK = , OS = a EMBED Câu 6a: a) Với b) Gọi là toạ độ của tiếp điểm. Ta có: Với Với Câu 7a: a) Tìm quỹ tích điểm H khi M di động trên AB SA (ABC) AH là hình chiều của SH trên (ABC). Mà CH SH nên CH AH. AC cố định, H nằm trên đường tròn đường kính AC nằm trong mp(ABC). Mặt khác: + Khi M A thì H A + Khi M B thì H E (E là trung điểm của BC). Vậy quĩ tích các điểm H là cung của đường tròn đường kính AC nằm trong mp(ABC). b) Tính SK và AH theo a và AHC vuông tại H nên AH = vuông tại A có Câu 6b: (P): và (C): . a) ; đồ thị hai hàm số có ít nhất một tiếp tuyến chung tại điểm hay tiếp xúc nhau tại . b) Phương trình tiếp tuyến chung của (P) và (C) tại tiếp điểm : Câu 7b: a) Vì SA = SC nên SO AC, SB = SD nên SO BD SO (ABCD). b) I, J, O thẳng hàng SO (ABCD). SO (ABCD) (SIJ) (ABCD) BC IJ, BC SI BC (SIJ) (SBC) (SIJ) c) Vẽ OH SI OH (SBC) SOB có SOI có =================
đang nạp các trang xem trước