TAILIEUCHUNG - Resource Constraints and Linear Programming

The process of finding an optimum outcome from a set of constrained resources, where the objective function and the constraints can be expressed as linear equations. The process of finding an optimum outcome from a set of constrained resources, where the objective function and the constraints can be expressed as linear equations. | Ch 11 Resource Constraints and Linear Programming The process of finding an optimum outcome from a set of constrained resources, where the objective function and the constraints can be expressed as linear equations. Drawing the Linear Model Adding the Linear Constraints Feasible Region Adding the Iso-Contribution Line The iso-contribution line is a ‘slope’ which represents the objective function. It is drawn as a generic line, then ‘floated’ to an optimum location within the feasible region. Finding the Optimum Point Float the iso-contribution line to an optimum position. Optimum point. Algebraic Solution to an Example LP Problem Define the objective function: Z = X + Y Set up the resource constraints : 32X + 59 Y = 0 Y >= 0 X <= 19 Solving the Algebraic Problem 1 In this simple case, the set of algebraic equations can be easily solved by substitution. As the Simplex method is tedious, and prone to error, the solution is best found with computer software such as Excel Solver. The standard Excel spreadsheet needs to be specially adapted to run Solver. In a more complex case, the Simplex method can be manually applied. Solving the Algebraic Problem 2 Additions to the standard spreadsheet are: An ‘Activity Level’ row for output levels. A ‘Resource Supply’ column for level of supply of constrained resources. A ‘Resource Use’ column for amount of each constrained resource used, and final objective function value. A ‘Sign’ column for the inequality signs:- ( for information only; not for “Solver” solution.) Solving the Algebraic Problem 3: The Adjusted Spreadsheet Spreadsheet ready for solution. Solving the Algebraic Problem 4: Using Excel Solver Inputs to the Solver dialog box. Solving the Algebraic Problem 5: Reading the Solver Results Read the results from the Solved spreadsheet. Solving the Algebraic Problem 6: Reading the Solver Reports (a). The answer report shows the solution. Solving the Algebraic Problem 6: Reading the Solver Reports (b). The sensitivity report shows possible adjustments to the solution. Solving the Algebraic Problem 6: Reading the Solver Reports (c). The limits report shows the amount of movement allowed in the cell values within the constraint levels. Linear Programming: Summary Use when an optimum solution is required, from constrained resources. Express the objective function and the constraints as linear equations. Solve using either the graphical method, or a computerized model. Interpret the results. Consider the sensitivity of the results. Make a decision. THE END

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.