TAILIEUCHUNG - Solving fuzzy linear programming problems with linear membership functions

In this paper, we concentrate on two kinds of fuzzy linear programming problems: Linear programming problems with only fuzzy technological coefficients and linear programming problems in which both the right-hand side and the technological coefficients are fuzzy numbers. We consider here only the case of fuzzy numbers with linear membership functions. | Turk J Math 26 (2002) , 375 – 396. ¨ ITAK ˙ c TUB Solving Fuzzy Linear Programming Problems with Linear Membership Functions Rafail N. Gasimov, K¨ ur¸sat Yenilmez Abstract In this paper, we concentrate on two kinds of fuzzy linear programming problems: linear programming problems with only fuzzy technological coefficients and linear programming problems in which both the right-hand side and the technological coefficients are fuzzy numbers. We consider here only the case of fuzzy numbers with linear membership functions. The symmetric method of Bellman and Zadeh [2] is used for a defuzzification of these problems. The crisp problems obtained after the defuzzification are non-linear and even non-convex in general. We propose here the “modified subgradient method” and use it for solving these problems. We also compare the new proposed method with well known “fuzzy decisive set method”. Finally, we give illustrative examples and their numerical solutions. Key Words: Fuzzy linear programming; fuzzy number; modified subgradient method; fuzzy decisive set method. 1. Introduction In fuzzy decision making problems, the concept of maximizing decision was proposed by Bellman and Zadeh [2]. This concept was adopted to problems of mathematical programming by Tanaka et al. [13]. Zimmermann [14] presented a fuzzy approach to multiobjective linear programming problems. He also studied the duality relations in fuzzy linear programming. Fuzzy linear programming problem with fuzzy coefficients was formulated by Negoita [8] and called robust programming. Dubois and Prade [3] investigated linear fuzzy constraints. Tanaka and Asai [12] also proposed a formulation of fuzzy linear programming with fuzzy constraints and gave a method for its solution which bases on inequality relations between fuzzy numbers. Shaocheng [11] considered 2000 Mathematical Subject Classification: 90C70, 90C26. 375 ˙ GASIMOV, YENILMEZ the fuzzy linear programming problem with fuzzy constraints and .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.