TAILIEUCHUNG - Báo cáo: Ordering Unicyclic Graphs in Terms of Their Smaller Least Eigenvalues

Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 591758, 10 pages doi: Research Article Ordering Unicyclic Graphs in Terms of Their Smaller Least Eigenvalues Guang-Hui Xu Department of Applied Mathematics, Zhejiang A&F University, Hangzhou 311300, China Correspondence should be addressed to Guang-Hui Xu, ghxu@ Received 15 July 2010; Accepted 2 December 2010 Academic Editor: Jozef Bana´ s ´ Copyright q 2010 Guang-Hui Xu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let G be a simple graph. | Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010 Article ID 591758 10 pages doi 2010 591758 Research Article Ordering Unicyclic Graphs in Terms of Their Smaller Least Eigenvalues Guang-Hui Xu Department of Applied Mathematics Zhejiang A F University Hangzhou 311300 China Correspondence should be addressed to Guang-Hui Xu ghxu@ Received 15 July 2010 Accepted 2 December 2010 Academic Editor Jozef Banas Copyright 2010 Guang-Hui Xu. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. Let G be a simple graph with n vertices and let 1 G be the least eigenvalue of G. The connected graphs in which the number of edges equals the number of vertices are called unicyclic graphs. In this paper the first five unicyclic graphs on order n in terms of their smaller least eigenvalues are determined. 1. Introduction Let G be a simple graph with n vertices and let A be the 0 1 -adjacency matrix of G. We call det 1T - A the characteristic polynomial of G denoted by P G 1 or abbreviated P G . Since A is symmetric its eigenvalues 11 G 12 G . . 1n G are real and we assume that 11 G 12 G 1n G . We call 1n G the least eigenvalue of G. Up to now some good results on the least eigenvalues of simple graphs have been obtained. 1 In 1 let G be a simple graph with n vertices G Kn then 1 1n G s 1n Kn-1 . The equality holds if and only if G K1-1 where Kn-1 is the graph obtained from Kn-1 by joining a vertex of Kn-1 with K1. 2 In 2-4 let G be a simple graph with n vertices then 1nG - n 1 2 2 Journal of Inequalities and Applications The equality holds if and only if G K n 2 z n 1 2 . 3 In 5 let G be a planar graph with n 3 vertices then Xn G -G2n - 4. The equality holds if and only if G K2 n-2. 4 In 6 the author surveyed the main results of the theory of graphs with least .

TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
11    171    2    01-01-2025
28    162    1    01-01-2025
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.