TAILIEUCHUNG - Basic Mathematics for Economists - Rosser - Chapter 9

9 Unconstrained optimization Find the maximum or minimum point of a single variable function by differentiation and checking first-order and second-order conditions. Use calculus to help find a firm’s profit-maximizing output. Find the optimum order size for a firm wishing to minimize the cost of holding inventories | 9 Unconstrained optimization Learning objectives After completing this chapter students should be able to Find the maximum or minimum point of a single variable function by differentiation and checking first-order and second-order conditions. Use calculus to help find a firm s profit-maximizing output. Find the optimum order size for a firm wishing to minimize the cost of holding inventories and purchasing costs. Deduce the comparative static effects of different forms of taxes on the output of a profit-maximizing firm. First-order conditions for a maximum Consider the total revenue function TR 60q - This will take an inverted U-shape similar to that shown in Figure . If we ask the question when is TR at its maximum the answer is obviously at M which is the highest point on the curve. At this maximum position the TR schedule is flat. To the left of M TR is rising and has a positive slope and to the right of M the TR schedule is falling and has a negative slope. At M itself the slope is zero. We can therefore say that for a function of this shape the maximum point will be where its slope is zero. This zero slope requirement is a necessary first-order condition for a maximum. Zero slope will not guarantee that a function is at a maximum as explained in the next section where the necessary additional second-order conditions are explained. However in this particular example we know for certain that zero slope corresponds to the maximum value of the function. In Chapter 8 we learned that the slope of a function can be obtained by differentiation. So for the function TR 60q - dTR slope 60 - dq 1993 2003 Mike Rosser Figure The slope is zero when 60 - 0 60 150 q Therefore TR is maximized when quantity is 150. Test Yourself Exercise 1. What output will maximize total revenue if TR 250q - 2q2 2. If a firm faces the demand schedule p 90 - how much does it have to sell to maximize sales revenue 3. A firm faces the total revenue .

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
337    146    2    28-12-2024
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.