TAILIEUCHUNG - Partial Differential Equations part 4

The correct way to difference Schr¨ dinger’s equation [1,2] is to use Cayley’s o form for the finite-difference representation of e−iHt , which is second-order accurate and unitary: e−iHt In other words, n+1 n 1 + 1 iH∆t ψj = 1 − 1 iH∆t ψj 2 2 | Initial Value Problems in Multidimensions 853 The correct way to difference Schrodinger s equation 1 2 is to use Cayley s form for the finite-difference representation of e--iHt which is second-order accurate and unitary c-iHt 1 2 iHAt 1 2 iHAt In other words 1 2 HCrr 1 - 1 iHAt fn On replacing H by its finite-difference approximation in x we have a complex tridiagonal system to solve. The method is stable unitary and second-order accurate in space and time. In fact it is simply the Crank-Nicholson method once again CITED REFERENCES AND FURTHER READING Ames . 1977 Numerical Methods for Partial Differential Equations 2nd ed. New York Academic Press Chapter 2. Goldberg A. Schey . and Schwartz . 1967 American Journal of Physics vol. 35 pp. 177-186. 1 Galbraith I. Ching . and Abraham E. 1984 American Journal of Physics vol. 52 pp. 6068. 2 Initial Value Problems in Multidimensions The methods described in and for problems in 1 1 dimension one space and one time dimension can easily be generalized to N 1 dimensions. However the computing power necessary to solve the resulting equations is enormous. If you have solved a one-dimensional problem with 100 spatial grid points solving the two-dimensional version with 100 x 100 mesh points requires at least 100 times as much computing. You generally have to be content with very modest spatial resolution in multidimensional problems. Indulge us in offering a bit of advice about the development and testing of multidimensional PDE codes You should always first run your programs on very small grids . 8 x 8 even though the resulting accuracy is so poor as to be useless. When your program is all debugged and demonstrably stable then you can increase the grid size to a reasonable one and start looking at the results. We have actually heard someone protest my program would be unstable for a crude grid but I am sure the instability will go away on a larger grid. That is nonsense of a .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.