TAILIEUCHUNG - Fast Fourier Transform part 6

., electromagnetic or gravitational) on a three-dimensional lattice that represents the discretization of three-dimensional space. Here the source terms (mass or charge distribution) and | Fourier Transforms ofReal Data in Two and Three Dimensions 525 CITED REFERENCES AND FURTHER READING Nussbaumer . 1982 FastFourier TransformandConvolutionAlgorithms New York SpringerVerlag . Fourier Transforms ofReal Data in Two and Three Dimensions ilp g S. S o Z co cr q 2 v _ o ii 3 X-X Two-dimensional FFTs are particularly important in the field of image process- 9 ing. An image is usually represented as a two-dimensional array of pixel intensities I 1 g real and usually positive numbers. One commonly desires to filter high or low frequency spatial components from an image or to convolve or deconvolve the image with some instrumental point spread function. Use of the FFT is by far the most efficient technique. In three dimensions a common use of the FFT is to solve Poisson s equation a for a potential . electromagnetic or gravitational on a three-dimensional lattice i c that represents the discretization of three-dimensional space. Here the source terms mass or charge distribution and the desired potentials are also real. In two and three dimensions with large arrays memory is often at a premium. It is therefore important to perform the FFTs insofar as possible on the data in place. We want a routine with functionality similar to the multidimensional FFT routine fourn I jj o 3 but which operates on real not complex input data. We give such a routine in this section. The development is analogous to that of leading to . the one-dimensional routine realft. You might wish to review that material at z -g this point particularly equation . S g g- It is convenient to think of the independent variables n1 . nL in equation as representing an L-dimensional vector n in wave-number space with I 5 values on the lattice of integers. The transform H n . nL is then denoted 2 2 g H n . i S It is easy to see that the transform H n is periodic in each of its L dimensions. j . Specifically if P1 P2 P3 . denote the vectors N1 0 0 . 0 N2 0 . f 0

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.