TAILIEUCHUNG - Dự đoán mức độ bụi PM2.5 bằng phương pháp khai phá dữ liệu

Thuật toán XGBoost được áp dụng để dự đoán mức độ ô nhiễm của bụi và thử nghiệm đã cho thấy độ chính xác của thuật toán này cao hơn với so với các thuật toán khai phá dữ liệu khác trong khi thời gian huấn luyện lại thấp hơn đáng kể. | Nguyễn Quỳnh Chi DỰ ĐOÁN MỨC ĐỘ BỤI BẰNG PHƯƠNG PHÁP KHAI PHÁ DỮ LIỆU Nguyễn Quỳnh Chi Học Viện Công Nghệ Bưu Chính Viễn Thông Trong nhiều năm qua tại các quốc gia phát triển có Tóm tắt Tình trạng ô nhiễm không khí trên toàn cầu nhiều phương pháp dự đoán ô nhiễm bụi đã được không ngừng gia tăng và gây ra những tác động tiêu cực nghiên cứu. Các thuật toán được áp dụng như hệ lai kết hợp tới sức khỏe con người như các bệnh đường hô hấp tim với suy diễn mờ rừng ngẫu nhiên Random Forest-RF mạch và ung thư. Tại Hà Nội trong thời gian gần đây tình máy vectơ hỗ trợ Support Vector Machine-SVM và mạng hình ô nhiễm càng trở nên xấu hơn đặc biệt là mật độ bụi nơ-ron. Những thuật toán này cho kết quả khả quan về độ luôn ở mức cao. Vì vậy việc dự đoán mức độ ô chính xác dự đoán. Tuy nhiên những phương pháp này lại nhiễm của chỉ số trở nên cần thiết hơn nhằm thực thực hiện trên những tập dữ liệu được thu thập tại những hiện cảnh báo sớm. Với dữ liệu về không khí gồm các chỉ thời điểm và địa điểm khác nhau nên khó có thể chọn ra số khí tượng và các chỉ ô nhiễm không khí thu thập được một phương pháp dự đoán từ những nghiên cứu trên phù tại Hà Nội chúng tôi thực hiện một phương pháp trích rút hợp với dữ liệu về không khí thu thập được tại thành phố đặc trưng mới cho kết quả tốt hơn khi chạy cùng một thuật Hà Nội. toán so với phương pháp cũ. Thuật toán XGBoost được áp Vì vậy chúng tôi đã thực hiện khảo sát các nghiên cứu dụng để dự đoán mức độ ô nhiễm của bụi PM và thử khác nhau liên quan tới dự đoán mức độ ô nhiễm của chỉ nghiệm đã cho thấy độ chính xác của thuật toán này cao số nhằm có cái nhìn tổng quan về các phương pháp hơn với so với các thuật toán khai phá dữ liệu khác trong dự đoán trong phần 2. Trên cơ sở đó trong phần 3 chúng khi thời gian huấn luyện lại thấp hơn đáng kể. tôi thực hiện phân tích dữ liệu thu thập được đề xuất cách trích rút đặc trưng mới và lựa chọn phương pháp huấn Từ khóa dự đoán chất lượng không khí khai phá dữ luyện .

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.