TAILIEUCHUNG - Đề thi học sinh giỏi môn Toán lớp 12 cấp quốc gia năm 2020 có đáp án - Sở GD&ĐT Bắc Ninh

Nhằm giúp các bạn học sinh đang chuẩn bị cho kì thi chọn HSG sắp tới cũng như giúp các em củng cố và ôn luyện kiến thức, rèn kỹ năng làm bài thông qua việc giải Đề thi học sinh giỏi môn Toán lớp 12 cấp quốc gia năm 2020 có đáp án - Sở GD&ĐT Bắc Ninh dưới đây. Hi vọng đây là tài liệu hữu ích cho các bạn trong việc ôn tập. Chúc các bạn thi tốt! | UBND TỈNH BẮC NINH ĐỀ THI CHỌN ĐỘI TUYỂN SỞ GIÁO DỤC VÀ ĐÀO TẠO DỰ THI HỌC SINH GIỎI QUỐC GIA NĂM 2020 Môn thi Toán ĐỀ CHÍNH THỨC Thời gian làm bài 180 phút không kể thời gian giao đề Ngày thi thứ nhất 24 9 2019 Đề thi có 01 trang Câu 1 5 0 điểm Cho hai dãy số un vn xác định như sau u0 a v0 b với hằng số thực a b cho trước thỏa un vn mãn 0 a b và un 1 vn 1 un với mọi số tự nhiên n . 2 a Chứng tỏ hai dãy đã cho đều hội tụ và có giới hạn bằng nhau. b Tìm giới hạn đó theo a b . Câu 2 5 0 điểm Cho số nguyên tố p . Chứng minh rằng tồn tại vô số số tự nhiên n thỏa mãn điều kiện 2020n 2019 n 2018 mod p . Câu 3 5 0 điểm Cho tam giác nhọn ABC không cân. Gọi H O lần lượt là trực tâm tâm đường tròn ngoại tiếp tam giác ABC D E lần lượt là chân đường cao hạ từ các đỉnh A B của tam giác ABC. Các đường thẳng OD và BE cắt nhau tại K các đường thẳng OE và AD cắt nhau tại L. Gọi M là trung điểm cạnh AB. Chứng minh ba điểm K L M thẳng hàng khi và chỉ khi bốn điểm C D O H cùng nằm trên một đường tròn. Câu 4 5 0 điểm Tìm tất cả các đa thức f x có hệ số thực và bậc là số tự nhiên lẻ sao cho f x 2 1 f 2 x 1 x . ------------ Hết ------------ Thí sinh không được sử dụng tài liệu và máy tính cầm tay. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh .Số báo danh . UBND TỈNH BẮC NINH HƯỚNG DẪN CHẤM SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHỌN ĐỘI TUYỂN DỰ THI HỌC SINH GIỎI QUỐC GIA NĂM 2020 Môn thi Toán Hướng dẫn chấm có 04 trang Câu Đáp án Điểm Cho 2 dãy số un vn xác định như sau un vn u0 a v0 b với hằng số thực a b cho trước thỏa mãn 0 a b và un 1 2 2 0 vn 1 un với mọi số tự nhiên n . a Chứng tỏ hai dãy đã cho đều hội tụ và có giới hạn bằng nhau. Ta chứng minh quy nạp rằng un un 1 vn và un 1 vn 1 vn với mọi n . 1 0 Do đó 2 dãy đã cho là đơn điệu và bị chặn bởi u0 a v0 b nên hội tụ. un vn lim un lim vn Từ un 1 cho qua giới hạn ta được lim un 1 hay lim un lim vn 2 2 1 0 đpcm . b Tìm giới hạn đó theo a b . 3 0 a Do 0 a b nên đặt cos với 0 . Ta chứng minh rằng b 2 1 0 un b cos 1

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.