TAILIEUCHUNG - Wind turbine systems operational state and reliability evaluation: An artificial neural network approach

In this paper, an artificial neural network (ANN) based algorithm is proposed as a solution to this problem. This algorithm is used to estimate wind turbine systems operational state and reliability. | Wind turbine systems operational state and reliability evaluation An artificial neural network approach International Journal of Data and Network Science 3 2019 323 330 Contents lists available at GrowingScience International Journal of Data and Network Science homepage ijds Wind turbine systems operational state and reliability evaluation An artificial neural network approach D. O. Aikhuelea A. Periolab and D. E. Ighravwea a Department of Mechanical and Biomedical Engineering Bells University of Technology Ota Nigeria b Department of Electrical and Computer Engineering Bells University of Technology Ota Nigeria CHRONICLE ABSTRACT Article history The increased role of wind turbine systems makes it important for its operational states to be Received December 28 2018 continuously monitored and optimized. This goal can be achieved using existing methods which Received in revised format May relies on closed-form expressions. The use of these methods however becomes challenging when 4 2019 interacting parameters cannot be fully presented with closed form expressions. In this paper an Accepted May 4 2019 Available online May 4 2019 artificial neural network ANN based algorithm is proposed as a solution to this problem. This Keywords algorithm is used to estimate wind turbine systems operational state and reliability. The proposed Wind turbine systems method is able to provide a more holistic approach to manage a wind turbine system with respect Artificial neural network to the problem mentioned above. Simulation results show that the developed ANN can predict the Downtime average number of failures per year distribution of failure and average downtime per failure with System reliability good accuracy. This was achieved using an ANN model with 5-15-3 architecture. The model gen- erates mean square errors of 10-3 10-3 and 10-3 at the training validation and testing stages respectively. The study is beneficial to wind turbine .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.