TAILIEUCHUNG - Đề thi HSG môn Toán lớp 12 - Cụm các trường THPT tỉnh Bắc Ninh

Tham khảo Đề thi HSG môn Toán lớp 12 - Cụm các trường THPT tỉnh Bắc Ninh để các em làm quen với cấu trúc đề thi, đồng thời ôn tập và củng cố kiến thức căn bản trong chương trình học. Tham gia giải đề thi để ôn tập và chuẩn bị kiến thức và kỹ năng thật tốt cho kì thi sắp diễn ra nhé! | Đề thi HSG môn Toán lớp 12 - Cụm các trường THPT tỉnh Bắc Ninh CỤM CÁC TRƯỜNG THPT ĐỀ THI GIAO LƯU HỌC SINH GIỎI CẤP TỈNH TỈNH BẮC NINH NĂM HỌC 2019 2020 ĐỀ CHÍNH THỨC MÔN THI TOÁN - Lớp 12 Đề thi gồm 06 trang - 50 câu Thời gian làm bài 90 phút không kể thời gian giao đề Mã đề thi 132 Thí sinh không được sử dụng tài liệu cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh . Số báo danh . Câu 1 Cho hàm số y ax3 bx 2 cx d a 0 có đồ thị như hình dưới đây. f x Hỏi đồ thị hàm số g x có bao nhiêu đường tiệm cận x 1 2 x 2 4 x 3 đứng A. 2 . B. 3 . C. 1 . D. 4 . 2 2 x y Câu 2 Trong hệ trục Oxy cho E 97T 97T 1 với 2 tiêu điểm F1 F2 . Đường thẳng d bất kỳ qua tiêu điểm F1 25 16 cắt E tại A B thì chu vi tam giác ABF2 có giá trị nào sau đây A. 12 B. 100 C. 20 D. 16 π π π π Câu 3 Tìm góc α để phương trình cos 2 x 3 sin 2 x 2 cos x 0 tương đương với phương 6 4 3 2 trình cos 2 x α cos x . π π π π A. α B. α C. α D. α 3 4 2 6 Câu 4 Hàm số y x 2 2 x 2 e có đạo hàm là x A. 2 xe x . B. 2 x 2 e x . C. x 2 e x . D. 2 x 2 e x . x t Câu 5 Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d1 y 1 4t và đường thẳng z 6 6t x y 1 z 2 d 2 . Viết phương trình đường thẳng đi qua A 1 1 2 đồng thời vuông góc với cả hai đường 2 1 5 thẳng d1 và d 2 . x 1 y 1 z 2 x 1 y 1 z 2 x 1 y 1 z 2 x 1 y 1 z 2 A. B. C. D. 14 17 9 2 1 4 3 2 4 1 2 3 S x 1 y 2 z 3 2 2 2 Câu 6 Trong không gian Oxyz cho mặt cầu 12 và mặt phẳng P 2 x 2 y z 3 0 . Viết phương trình của đường thẳng đi qua tâm mặt cầu S và vuông góc với P . Trang 1 6 - Mã đề thi 132 x 1 4t x 1 2t x 1 2t x 1 2t A. y 2 4t B. y 2 2t C. y 2 2t D. y 2 2t z 3 2t z 3 t z 3 t z 3 t Câu 7 Cho hàm số y f x ax3 bx 2 cx d a 0 . Khẳng định nào sau đây đúng A. Hàm số luôn tăng trên B. Hàm số luôn có cực trị C. Đồ thị hàm số luôn cắt trục hoành D. lim f x x Câu 8 Cho hàm số y f x xác định và có đạo hàm cấp một và cấp hai trên khoảng a b và x0 a b . Khẳng định nào sau đây sai A. y x0 0 và y x0 0 thì x0 là điểm cực trị của hàm số B. y x0 0 và y x0 gt 0 thì x0

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.