TAILIEUCHUNG - Bài giảng Lý thuyết đồ thị - Bài 9: Bài toán ghép cặp

Bài giảng "Lý thuyết đồ thị - Bài 9: Bài toán ghép cặp" cung cấp cho người học các kiến thức: Đồ thị lưỡng phân, định lí Hall và ứng dụng, thuật toán tìm SDR, bài toán phân công công việc, bài toán giao việc của Gale,. . | Bài giảng Lý thuyết đồ thị - Bài 9: Bài toán ghép cặp Bài 9 Bài toán ghép cặp Giới thiệu Bài toán ghép cặp có thể chia thành 2 loại Xét việc ghép mỗi phần tử của tập hợp này với 1 phần tử của tập hợp khác như phân công n việc khác nhau cho n người, mỗi người 1 việc, đó chính là bài toán hôn nhân. Xét việc chia 2k phần tử của 1 tập hợp thành k cặp, ví dụ như sắp xếp 2k sinh viên vào k phòng trong ký túc xá (mỗi phòng có 2 sinh viên) Định lý Hall Bài toán hôn nhân do Phillip Hall giải quyết năm 1935 có rất nhiều ứng dụng và được phát biểu dưới nhiều dạng khác nhau. 2 Đồ thị lưỡng phân Định nghĩa: Đơn đồ thị G=(V,E) sao cho V=V1 V2, V 1 V 2= , V 1 , V2 và mỗi cạnh của G được nối một đỉnh trong V1 và một đỉnh trong V2 được gọi là đồ thị 2 đầu (lưỡng phân). Cho đồ thị lưỡng phân G=(A,B,E). Một ghép cặp là một tập hợp các cạnh sao cho không có cạnh nào có chung 1 đầu mút. Một ghép cặp từ A đến B được gọi là hoàn hảo khi nó có thể nối tất cả các đỉnh của A đến B 3 Đặt vấn đề Có 5 việc cần tuyển người đảm nhiệm, mỗi người 1 việc. Gọi Si là tập hợp các ứng viên thích hợp cho việc thứ i và giả sử rằng ta có S1 = {A, B, C}, S2 = {D, E}, S3 = {D}, S4 = {E}, S5 = {A, E} Có thể tuyển đủ 5 người thích hợp cho 5 việc nói trên hay không? ? 4 Đặt vấn đề Có 4 chàng trai B1, B2, B3, B4 và 5 cô gái G1, G2, G3, G4, G5; mỗi chàng có 1 danh sách các cô gái thích hợp như sau: B1: {G1, G4, G5} B2: {G1} B3: {G2, G3, G4} B4: {G2, G4} Một chàng trai có thể kết hợp với 1 cô gái thích hợp hay không? Dễ dàng ta thấy lời giải cho bài toán này là các cặp sau: (B1, G4), (B2, G1), (B3, G3), (B4, G2) 5 Định nghĩa Cho S là một tập hợp hữu hạn và đa tập hợp A={A 1, A2, Am} là một họ các tập con của S. Ta bảo A thỏa điều kiện Hall nếu với mọi k {1, , m} và k phần tử bất kỳ Ai1, Aik A, ta có

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.