TAILIEUCHUNG - Đề thi thử đại học 2010 - Môn toán

Đề thi thử đại học 2010 - Môn toán - đề số 3 giúp bạn có tài liệu tham khảo chất lượng để ôn tập môn Toán chuẩn bị cho kỳ thi quan trọng sắp tới. | Đề thi thử đại học 2010 - Môn toán ĐỀ THI THỬ ĐẠI HỌC 2010 Môn Toán – ĐỀ 03 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) 2x +1 Câu I (2 điểm) Cho hàm số y = (C) x +1 sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho trên đồ thị (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất. Câu II (2 điểm) phương trình sau: 8 ( sin x + cos x ) + 3 3 sin 4 x = 3 3cos 2 x − 9sin 2 x + 11 . 6 6 2 y 2 − x 2 = 1 2. Giải hệ phương trình: 3 3 . 2 x − y = 2 y − x 2 1 1 x+ ∫ ( x + 1 − x )e x dx . Câu III (1 điểm) Tính tích phân: I = 1 2 Câu IV(1 điểm) Cho tứ diện ABCD có AC = AD = , BC = BD = a, khoảng cách từ B đến mặt phẳng (ACD) bằng . Tính góc giữa hai mặt phẳng (ACD) và (BCD). Biết thể của khối tứ diện ABCD bằng . 2 2 ( ) Câu V (1 điểm) Với mọi số thực x, y thỏa điều kiện 2 x + y = xy + 1 . Tìm giá trị lớn nhất và x4 + y4 giá trị nhỏ nhất của biểu thức P = . 2 xy + 1 II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần chương trình Chuẩn Câu VIa.( 2 điểm) 1. Trong mp với hệ tọa độ Oxy cho đường tròn : x2 +y2 - 2x +6y -15=0 (C ). Viết PT đường thẳng (Δ) vuông góc với đường thẳng: 4x-3y+2 =0 và cắt đường tròn (C) tại A;B sao cho AB = 6. x − 2 y z+ 1 không gian với hệ tọa độ Oxyz cho hai đường thẳng: d1 : = = và 4 −6 −8 x − 7 y− 2 z d2 : = = . Xét vị trí tương đối của d1 và d2 . Cho hai điểm A(1;-1;2) và B(3 ;- 4;-2), −6 9 12 Tìm tọa độ điểm I trên đường thẳng d1 sao cho IA + IB đạt giá trị nhỏ nhất. Câu (1 điểm) Giải phương trình sau trên tập hợp số phức: z4 – z3 +6z2 – 8z – 16 = 0 . 2. Theo chương trình Nâng cao. Câu VIb.(2điểm) x2 y 2 mặt phẳng Oxy cho elip (E): + = 1 và đường thẳng ∆ :3x + 4y =12. Từ điểm M bất 4 3 kì trên ∆ kẻ tới (E) các tiếp tuyến MA, MB. Chứng minh rằng đường thẳng AB luôn đi qua một điểm cố định. không gian với hệ tọa độ Oxyz , cho M(1;2;3).Lập phương trình mặt phẳng đi qua M cắt ba tia Ox tại

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.