TAILIEUCHUNG - Nhận dạng chữ số viết tay dựa trên mạng nơ ron tích chập sâu

Bài viết trình bày một phương pháp học sâu để so sánh với các phương pháp dựa trên các kỹ thuật thống kê đã có để giải quyết bài toán nhận dạng chữ số viết tay. | Nhận dạng chữ số viết tay dựa trên mạng nơ ron tích chập sâu TẠP CHÍ KHOA HỌC Khoa học Tự nhiên và Công nghệ, Số 14 (4/2019) NHẬN DẠNG CHỮ SỐ VIẾT TAY DỰA TRÊN MẠNG NƠ-RON TÍCH CHẬP SÂU Nguyễn Văn Tú, Hoàng Thị Lam, Nguyễn Thị Thanh Hà Trường Đại học Tây Bắc Tóm tắt: Trong lĩnh vực xử lý ảnh, nhận dạng mẫu là một trong các thách thức lớn nhất của các nhà nghiên cứu trong những năm qua. Mục tiêu của nhận dạng mẫu là phát hiện, trích chọn các đặc trưng trong ảnh để phân loại các mẫu vào các lớp khác nhau. Một bài toán nổi tiếng trong lĩnh vực này là nhận dạng chữ số viết tay, trong đó mỗi chữ số phải được gán vào một trong 10 lớp sử dụng một số phương pháp phân loại. Mục đích của chúng tôi trong bài báo này là trình bày một phương pháp học sâu để so sánh với các phương pháp dựa trên các kỹ thuật thống kê đã có để giải quyết bài toán nhận dạng chữ số viết tay. Chúng tôi sẽ xây dựng mô hình mạng nơ-ron tích chập sâu với việc sử dụng nhiều lớp khác nhau của mạng để có thể trích chọn tự động được các đặc trưng tốt nhất trong ảnh. Đồng thời, chúng tôi cũng kết hợp giữa mạng nơ-ron tích chập và Multi-layer Perceptron nhằm cải thiện hiệu suất của mô hình. Chúng tôi đã xây dựngcác thực nghiệm sử dụng tập dữ liệu MNIST và đã đạt được độ chính xác phân loại cao nhất là 99,34% và tỷ lệ lỗi là 0,74%. Các kết quả này cho thấy mô hình đề xuất của chúng tôi cho kết quả cao hơn so với nhiều mô hình đã xây dựng trước đó trên cùng tập dữ liệu. Từ khóa: Nhận dạng chữ số viết tay, mạng nơ-ron tích chập, multi-layer perceptron, phân loại. 1. Tổng quan Trong những năm gần đây, chúng ta đã được chứng kiến nhiều thành tựu vượt bậc trong lĩnh vực xử lý ảnh (image processing). Các hệ thống xử lý ảnh lớn như Facebook, Google hay Amazon đã đưa vào sản phẩm của mình những chức năng thông minh như nhận diện khuôn mặt người dùng, phát triển xe hơi tự lái hay drone giao hàng tự động. Mạng nơ-ron tích chập (Convolutional Neural Network

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.