TAILIEUCHUNG - Đề thi chọn HSG lớp 9 môn Toán năm học 2017 - 2018 - Sở GD&ĐT Bình Thuận

Đề thi chọn HSG lớp 9 môn Toán năm học 2017 - 2018 - Sở GD&ĐT Bình Thuận sẽ giúp các bạn học sinh chuẩn bị ôn luyện và bổ trợ kiến thức cho kỳ thi sắp tới. Tài liệu này được trình bày hệ thống, logic và chú trọng vào những điểm trọng tâm cần ôn tập trong chương trình Toán 9. | ĐỀ THI CHỌN HSG TỈNH BÌNH THUẬN NĂM HỌC 2017-2018 Câu 1( 4 điểm) x 2 x 3x 2 x 3( x 1) với x 1 và x > 0 x x 1 x x 1 Cho biểu thức: Q 25 x : a, Rút gọn biểu thức Q b, Tìm x để biểu thức Q nhận giá trị nguyên. Câu 2(4 điểm) ax y a 2 2 Cho hệ phương trình ẩn x và y: (a 1) x ay 2a 1 a, Giải hệ phương trình trên với a = 1 b, Tìm a để hệ phương trình có nghiệm duy nhất (x;y) thỏa P = xy đạt giá trị lớn nhất. Câu 3 (4 điểm) Với k là số nguyên dương, ký hiệu Bk x N * / x là bội số của k} Cho m,n là các số nguyên dương a, Chứng minh rằng Bmn là tập hợp con của Bm Bn b, Tìm điều kiện của m và n để Bm Bn là tập hợp con của Bmn . Câu 4 ( 6 điểm) Cho hình vuông ABCD. Gọi E là điểm thay đổi trên BC( E không trùng B và C) và F thay đổi trên CD sao cho EAF 450 , BD cắt AE , AF lần lượt tại M và N. a, Chứng minh năm điểm E, M, N, F, C cùng nằm trên một đường tròn. b, Tính tỷ số MN FE c, Chứng minh đường thẳng EF luôn tiếp xúc với một đường tròn cố định khi E,F thay đổi. Câu 5( 2 điểm) Trên mặt phẳng cho 4035 điểm phân biệt. Biết rằng trong ba điểm bất kỳ trong số đó luôn tồn tại hai điểm có khoảng cách giữa chúng nhỏ hơn một. Chứng minh rằng tồn tại một hình tròn bán kính bằng một chứa không ít hơn 2018 điểm đã cho. LỜI GIẢI ĐỀ THI CHỌN HỌC SINH GIỎI TỈNH BÌNH THUẬN NĂM HỌC 2017-2018 Câu 1( 4 điểm) x 2 x 3x 2 x 3( x 1) với x 1 và x > 0 x x 1 x x 1 Cho biểu thức: Q 25 x : a, Rút gọn biểu thức Q b, Tìm x để biểu thức Q nhận giá trị nguyên. Lời giải a, Rút gọn. Với x 1 và x > 0, ta có: x 2 x 3x 2 x 3( x 1) Q 25 x : x x 1 x x 1 5 x : x ( x 1) (3 x 2) 3( x 1) 5 x : ( x x 3 x 2 3 x 3) 5 x : ( x x 1) 5 x x x 1 b, Tìm x để biểu thức Q nhận giá trị nguyên. Dễ thấy Q>0. Phương trình sau có nghiệm x > 0, x 1 Q 5 x x x 1 Qx (Q 5) x Q 0 có nghiệm x > 0, x 1 Qy 2 (Q 5) y Q 0 có nghiệm y > 0, y

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.