TAILIEUCHUNG - Using active learning in motor control and matlab simulation

Designing any intelligent control system is possible by modeling. In this paper, solid modeling, and the four axes of motion of a robot arm, the starting point positioning with servo motors of the simulation of neural networks with active learning strategies which types of learning are presented. | Journal of Automation and Control Engineering Vol. 3, No. 4, August 2015 Using Active Learning in Motor Control and Matlab Simulation Ercan Nurcan Yilmaz Department of Electrical & Electronic Engineering, Faculty of Technology, Gazi University, Teknikokullar, Ankara, Turkey E-mail: enyilmaz@ Onur Battal Haci Bektas Veli Vocational School, Nevşehir University, Hacibektas, Nevsehir, Turkey E-mail: onurbattal@ Abstract—People's desire to produce systems capable of learning and decision making, has led to the concept of artificial intelligence. One of the many ways that is used in the design of intelligent systems is artificial neural networks. Artificial neural networks are computational networks which attempt to simulate the networks of nerve cell (neurons) like central nervous system of the living. Designing any intelligent control system is possible by modeling. In this paper, solid modeling, and the four axes of motion of a robot arm, the starting point positioning with servo motors of the simulation of neural networks with active learning strategies which types of learning are presented. Index Terms—active learning, artificial neural networks, servo motor I. INTRODUCTION In this study, we would like to bring a novel active machine learning simulation result in order to discuss for which problems the autonomous learning loop can be closed using learning, and to identify the machine learning methods that can be used to close it. Training phase of learner systems that will be trained with supervised learning is based on input and output data set that produced by this system. Sometimes, training data sets cannot be easily achieved in complex systems by using the system modeling as a result of modeling and control of these systems difficult by using artificial neural networks. In addition, the approach function quality used for the training of the neural network and longer duration of training depending on the size of the training data

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.