TAILIEUCHUNG - Nonlinear oscillators under delay control

In this paper, oscillations and stability of nonlinear oscillators with time delay are studied by means of the asymptotic method of nonlinear mechanics. Harmonic, superharmonic, subharmonic and parametric resonances of a Duffings oscillator are analyzed. Analytical method in combination with a computer is used. | Vietnam Journal of Mechanics, NCST of Vietnam Vol. ~1, 1999, No 2, (75 - 88) NONLINEAR OSCILLATORS UNDER DELAY CONTROL NGUYEN VAN DAO Vietnam National University, Hanoi 19 Le Thanh Tong, Hanoi, Vietnam ABSTRACT. In this paper, oscillations and stability of nonlinear oscillators with time delay are studied by means of the asymptotic method of nonlinear mechanics. Harmonic, superharmonic, subharmonic and parametric resonances of a 's oscillator are analyzed. Analytical method in combination with a computer is used. 1. Introduction The harmonically forced Duffing's oscillator with time delay state feedback has been investigated in .[1] by using the method of multiple scales [2]. Both primary and 1/3 subharmonic resonances of the Duffing's oscillator with weak nonlinearity and weak delay feedback have been e~amined. As shown in [1] the simplest model for various controlled nonlinear systems, ., active vehicle suspension systems when the nonlinearity in tires is taken into account, is described by a second order differential equation with time delay in the form d 2 x(t) dt 2 dx(t) + x(t) = -2€--;u---- JLX 3(t) + 2ux(t- ~) + 2v dx(t- ~) dt + 2pcos .Xt, () where €, JL, u, v and ~ are constants. To study all possible simple resonances in the dynamic system governed by equation (}, in the present paper it is supposed that between the external frequency A and the natural frequency 1 there exists a relationship of the form A= n + cu, () where n = !?. is a rational number, p and q are integers. We suppose that paq rameters €, JL, u, v are small. The smallness of these parameters is insured by introducing small positive parameter c. 75 2. Harmonic Resonance f Assuming that n = 1 and equation () in the form is a small quantity of e - order, we can rewrite () where F dx(t) = -2€---;u--- 3 (t) + 2ux(t- ~) + 2v dx(tdt ~) + 2pcos >t. () The solution of equation () is found in the form x(t) a cos .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.