TAILIEUCHUNG - Transition length of two stationary random functions in investigation of railway stability

In this paper the scientific justification for determination of transition length of two stationary random functions is presented on the basis of the weight function and properties of stationary random function in wide sense. | Vietnam Journal of Mechanics, NCST of Vietnam Vol. 22, 2000, No 1 (47 - 53) · . TRANSITION LENGTH OF TWO STATIONARY RANDOM FUNCTIONS IN INVESTIGATION OF RAILWAY STABILITY NGUYEN DUONG NAM Research institute for transportation science and technology ABSTRACT. In this paper the scientific justification for determination of transition length of two stationary random functions is presented on the basis of the weight function and properties of stationary random function in wide sense. The application of the results for practice gives the transition lengths of straight and curved railway, which it is necessary to throw away in measurement of initial horizontal displacement of railway in its stability estimation under action of longitudinal compression load. STRAIGHT SEGMENT 1. Introduction Measurement data of the initial horizontal displacement of the neutral axis of straight and curved railway are different stationary gaussian random functions. The connection of the two kinds of the railway makes them to become unstationary, and it is difficult for processing measurement data for research of railway To overcome the difficulty it is necessary to find the reasona~le set of measurement data near to connection place, which must be no used in its processing. The problem will be solved below by theory and application in practice. 47 2. Scientific justification . Let us consider the mechanical system governed by random differential equation Fxy(x) = HxYo(x), () where () and aj (j = O, . . . , n), bk (k = 0, . , m) are real constant coefficients, y 0 (x) is input random function of independent variable x, y(x) is output function. 'rhe mean value my(x) and variance Dy(x) of y(x) can be found by the following formulae [2J J x my(x) = my 0 W(x, s)ds = my0 h(x), () 0 x Dy(x) where my 0 = a~(x) = = const x J J 0 0 W(x, §i) [ W(x, s2)Ky0 (s1 - s2)ds2 Jds1, () is mean value of input stationary random function .

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
11    177    2    19-01-2025
65    149    1    19-01-2025
13    164    1    19-01-2025
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.