TAILIEUCHUNG - Method of transmission matrix for investigating planar relative motions

In the paper [2] the method of transmission matrix applying for the case of a loop with turning pairs investigated. In the present paper the kinematics of a loop connected by composite joints, . the one of revolute-translational joints are discussed now. By means of proposed method the planar motion of rigid bodies is presented by a point of general view. | Vietnam J ournal of Mechanics, VAST, Vol. 29, No. 2 (2007), pp. 105 - 116 METHOD OF TRANSMISSION MATRIX FOR INVESTIGATING PLANAR RELATIVE M OTIONS Do SANH Hanoi University of Technology Do DANG KHOA University of Texas at Austin, USA Abstract . In the paper [2] the method of transmission matrix applying for the case of a loop with turning pairs investigated . In the present paper the kinematics of a loop connected by composite joints, . the one of revolute-translational joints are discussed now . By means of proposed method the planar motion of rigid bodies is presented by a point of general view . Especially,the introduced method allows to apply effectively universal softwere, for example, MATCAD, MAPLE, . for investigating complex mechanical systems. 1. GENERA L INFORMATIONS AB OUT T R ANSMIS SION MAT R IX METH OD Let us consider a figure S rotating about 0 of the frame of reference Ox' y' and oriented by the y' angle in counteroclockwise direction. This frame oy y of reference is in translational displacement with respect to t he fixed frame of reference 0 0 °x 0 y . As is known, the last fr ame is refered to global or inerx tia frame of reference. An other frame of reference Oxy rigidly connected to the figure S at its point u 0 is assigned a body frame of reference. Let us consider a point of the figure S. Its coordinates in these frame of reference are named global - coordi:•V nate and body-coordinate respectively. It is noticed : that the body-coordinates are constants, while the oo;._ 0 x global-coordinates are changing quantities at time. Fig. 1 Let us interest a point M connected rigidly to the figure S . Its components of bodycoordinates are denoted by the constants a and b. It is easy to establish the relationship between the components of global-coordinates and body-coordinates. That are I (1. 1) where u, v are the components of global-coordinate of the origin 0 . The expression ( 1. 1) can be written in the matrix .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.