TAILIEUCHUNG - Second order symmetric duality in fractional variational problems over cone constraints

In the present paper, we introduce a pair of second order fractional symmetric variational programs over cone constraints and derive weak, strong, and converse duality theorems under second order F-convexity assumptions. Moreover, self duality theorem is also discussed. Our results give natural unification and extension of some previously known results in the literature. | Yugoslav Journal of Operations Research 28 (2018), Number 1, 39-57 DOI: SECOND ORDER SYMMETRIC DUALITY IN FRACTIONAL VARIATIONAL PROBLEMS OVER CONE CONSTRAINTS Anurag JAYSWAL Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826 004, Jharkhand, India anurag jais123@ Shalini JHA∗ Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826 004, Jharkhand, India Received: December 2016 / Accepted: June 2017 Abstract: In the present paper, we introduce a pair of second order fractional symmetric variational programs over cone constraints and derive weak, strong, and converse duality theorems under second order F-convexity assumptions. Moreover, self duality theorem is also discussed. Our results give natural unification and extension of some previously known results in the literature. Keywords: Variational problem, Second order F-convexity, Second order duality. MSC: 90C26, 90C29, 90C30, 90C46. 1. INTRODUCTION Duality results in calculus of variations arise in various fields of engineering science such as mechanics, physics, filtering and optimal control theory. It allows us to associate a dual problem with variational problem and to study the relationship between the two problems. In mechanics, duality allows us to describe precisely the relationship between different energy principles which govern certain nonlinear problems. The primal and the dual problems are two well known forms of the conservation principles characterizing the displacements and the constraints, respectively. 40 A. Jayswal, S. Jha / Second Order Symmetric Duality The notion of symmetric duality received several impulse after poineering work of Dorn [7]. Mond and Hanson [15] applied the concept of symmetric duality to variational problems. Kim and Lee [14] formulated a pair of multiobjective nonlinear generalized symmetric .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.