TAILIEUCHUNG - A method of bearing fault diagnosis using singular spectrum analysis, sparse filtering and anfis

This paper presents an online bearing damage identifying method named ASBDIM based on ANFIS (Adaptive Neuro-Fuzzy Inference System), Singular Spectrum Analysis (SSA) and sparse filtering. This is an online estimating process operated via two phases, offline and online one. In the offline period, by using SSA and sparse filtering, a database signed Off DaB is built whose inputs are features extracted from the measured data stream typed big data, while its outputs are values encoding the surveyed bearing damage statuses. | Journal of Computer Science and Cybernetics, , (2017), 213–228 DOI A METHOD OF BEARING FAULT DIAGNOSIS USING SINGULAR SPECTRUM ANALYSIS, SPARSE FILTERING AND ANFIS SY DZUNG NGUYEN1 , VAN HIEP NGUYEN2 1 Ton Duc Thang University, Ho Chi Minh City, Viet Nam 2 Master student, Industrial University of Ho Chi Minh City nguyensydung@ Abstract. Bearing is an important machine detail participating in almost all mechanical systems. Estimating online its operating condition to exploit actively the systems, therefore, is one of the most urgent requirements. This paper presents an online bearing damage identifying method named ASBDIM based on ANFIS (Adaptive Neuro-Fuzzy Inference System), Singular Spectrum Analysis (SSA) and sparse filtering. This is an online estimating process operated via two phases, offline and online one. In the offline period, by using SSA and sparse filtering, a database signed Off DaB is built whose inputs are features extracted from the measured data stream typed big data, while its outputs are values encoding the surveyed bearing damage statuses. The ANFIS is then employed to identify the dynamic response of the mechanical system corresponding to the bearing damage statuses reflected by the Off DaB. In the online period, first, at each estimating time, another database called On DaB is established using the way similar to the one used for building the Off DaB. The On DaB participates as inputs of the ANFIS to generate its outputs which are then compared with the corresponding encoded outputs to specify bearing real status at this time. Survey results based on different data sources showed the effectiveness of the proposed method. Keywords. Identifying bearing damage, AI for estimating damage, ANFIS based damage identification, SSA for identifying damage. 1. INTRODUCTION Online identifying bearing fault to exploit, maintain or repair systems actively is really meaningful work [1, 2, 3, 4, 5, 6,

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.