TAILIEUCHUNG - Approximation schemes for two non-linear knapsack problems arising in alternating current electric systems

The purpose of this paper is to study the approximability of two non-linear Knapsack problems, which are motivated by important applications in alternating current electrical systems. The first problem is to maximize a nonnegative linear objective function subject to a quadratic constraint, whilst the second problem is a dual version of the first one, where an objective function is minimized. | Journal of Computer Science and Cybernetics, , (2017), 165–179 DOI APPROXIMATION SCHEMES FOR TWO NON-LINEAR KNAPSACK PROBLEMS ARISING IN ALTERNATING CURRENT ELECTRIC SYSTEMS TRUNG THANH NGUYEN Hai Phong University; Abstract. The purpose of this paper is to study the approximability of two non-linear Knapsack problems, which are motivated by important applications in alternating current electrical systems. The first problem is to maximize a nonnegative linear objective function subject to a quadratic constraint, whilst the second problem is a dual version of the first one, where an objective function is minimized. Both problems are NP-hard since they generalize the unbounded Knapsack problem, and it is unlikely to obtain polynomial-time algorithms for them, unless P = NP. It is therefore of great interest to know whether or not there exist efficient approximation algorithms which can return an approximate solution in polynomial time with a reasonable approximation factor. Our contribution of this paper is to present polynomial-time approximation schemes (PTASs) and this is the best possible result one can hope for the studied problems. Our algorithm uses a linear programming approach, which is common in the design of approximation schemes. Keywords. Complex power, alternating current electrical systems, integer quadratic programming, approximation scheme. 1. . INTRODUCTION Motivation and problem model The classical Knapsack problem and its variants naturally arise in modelling various practical applications such as computer networks, production planning, health care (see [7] and the references therein), and power allocation (see, ., [8, 9, 14]). Motivated by applications in electrical power production and allocation, in this paper we consider two non-linear Knapsack problems. The first problem, called Packing, is to maximize a nonnegative linear objective function subject to a nonlinear and .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.