TAILIEUCHUNG - A textbook of Computer Based Numerical and Statiscal Techniques part 35

A textbook of Computer Based Numerical and Statiscal Techniques part 35. By joining statistical analysis with computer-based numerical methods, this book bridges the gap between theory and practice with software-based examples, flow charts, and applications. Designed for engineering students as well as practicing engineers and scientists, the book has numerous examples with in-text solutions. | 326 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES 2 12 7 0 32 4 12 7 32 9 7 12 32 15 12 14 32 8 7 3 45 708 Hence the required area of the cross-section of the river 708 sq. m. Ans. ii By Simpson s one-third rule 80 h I ydx - y0 y8 4 y1 y3 y5 y7 2 y2 y4 y6 0 3 10 y 0 3 4 4 9 15 8 2 7 12 14 710 Hence the required area of the cross-section of the river 710 sq. m. Ans. Example 10. Evaluate 1 dx 1 - by dividing the interval of integration into 8 equal parts. Hence find loge 2 approximately. Sol. Since the interval of integration is divided into an even number of subintervals we shall use Simpson s one-third rule. 1 Here y- 1 f f x f ß 1_ 1 _ 8 yo_f _ 1 0_ 1 yi I8J 1 1 9 y2_fI i--5 8 _ f 31_ 8 _ 41_ 2 _ r 51_ 8 y3 8 J ii y4 ß 8J 3 y5 ß 8J 13 r6 l 4 r7 1_ 8 1 y6 - J I 8 I-7 y7 - f I 8 I-15 and y8 - f i - 0- Hence x 0 1 8 2 8 3 8 4 8 5 8 6 8 7 8 1 y 1 8 4 8 2 8 4 8 1 9 5 11 3 13 7 15 2 yo y1 y2 y3 y4 y5 y6 y7 ys By Simpson s one-third rule I n h y0 ys 4 y 1 y3 y5 y 7 2 y2 y4 y 0 1 x 3 IT1 11 418 ß 214 2 4 Y Hence h 1 8 24 _ 2 J 9 11 13 15 J 5 3 7 J_ . Ans. NUMERICAL DIFFERENTIATION AND INTEGRATION 327 Since f 1 ÈL 10g l X J log 2 0 1 x 0 1oge 2 . Ans. EULER-MACLAURIN S FORMULA This formula is based on the expansion of operators. Suppose AF x f x then an operator A 1 called inverse operator is defined as F x A-1 f x Again we have AF x f x0 F x1 - F xo f x0 F x2 - F x1 f x1 F xn - F xn-1 f xn-1 Adding all these we get n-1 F xn - F x0 X f xi i 0 . 1 where x0 x1 xn are the n 1 equidistant values of x with interval h. Now F x A-1f x E -1 -1 f x ehD -1 -1 f x h3 D3 ------ x I-1 3 f x 2 3 f x fhD h2D2 hD 1 - 1 I ---- I 2 3 - u 1D-1 LfhD d 1 -1 -2 fhD h2D2 h I 2 3 . I 2 I 2 3 -4 f x _1 L hD h2D2 h4 D4 3 D I 1------------------------ . f x h I 2 12 720 f h jf x dx -1 f x 12f x - 72 f x . 2 328 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Between limits x x0 and x xn from equation 2 we have F xn -F xo 1 f nf x dx-1 f xn -f xo - f xn -f x0 h xg 2

TÀI LIỆU MỚI ĐĂNG
10    185    3    06-01-2025
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.