TAILIEUCHUNG - A textbook of Computer Based Numerical and Statiscal Techniques part 34

A textbook of Computer Based Numerical and Statiscal Techniques part 34. By joining statistical analysis with computer-based numerical methods, this book bridges the gap between theory and practice with software-based examples, flow charts, and applications. Designed for engineering students as well as practicing engineers and scientists, the book has numerous examples with in-text solutions. | 316 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES TRAPEZOIDAL RULE Putting n 1 in equation 2 and taking the curve y f x through x0 y0 and x0 y0 as a polynomial of degree one so that differences of order higher than one vanish we get X0 h C 1 . h h J f x dx hI y0 -Ay0 y 2y Vi _ y0 t y0 Vi 2 2 2 x0 v y Similarly for the next sub interval X0 h X0 2h we get X0 2h h X0 nh h j f x dx - yi y2 j f x dx - yn_i Vn X0 h X0 n-1 h Adding the above integrals we get X0 nh j f x dx - Vn V0 2 yi y . yn-1 2 x0 which is known as Trapezoidal rule. J f x dx 2h SIMPSON S ONE-THIRD RULE Putting n 2 in equation 2 and taking the curve through x0 y0 x1 y1 and x2 y2 as a polynomial of degree two so that differences of order higher than two vanish we get 1 a2 y0 Ay0 7 A y0 6 _ x0 6y0 6 y1 - y0 y2 - 2y1 - y0 - y0 4y1 y2 X0 4h h Similarly J f x dx 3 2 . X0 2 h X0 nh h J f x dx 3 yn-2 4yn-1 yn X0 n-2 h Adding the above integrals we get X0 nh J f x dx - y0 yn 4 yi y3 . yn-1 2 y2 y4 . yn-2 3 x0 which is known as Simpson s one-third rule. Note Using the formula the given interval of integration must be divided into an even number of subintervals. NUMERICAL DIFFERENTIATION AND INTEGRATION 317 SIMPSON S THREE-EIGHT RULE Putting n 3 in equation 2 and taking the curve through xo yo x1 y1 x2 y2 and x3 y3 as a polynomial of degree three so that differences of order higher than three vanish we get xo 3h f f x dx - 3h yo 3 Ayo 3 A2yo 1A3yo J _ 2 4 8 x0 - 3h Oo 12 y - yo 6 y2 - 2yi yo y - 3y2 3yi - yo 3h - yo 3y1 3y2 y3 8 xoT 3h Similarly J f x dx y y3 3y4 3y5 y6 . xo 3h xo r6h 3h J f x dx y yn-3 3yn-2 3yn-1 yn xo n-3 h Adding the above integrals we get xo nh 3h I f x dx yQ yn 3 yi y2 y4 y5. yn-2 yn-1 2 y3 y6 . yn-3 8 xo which is known as Simpson s three-eighth rule. Note Using this formula the given interval of integration must be divided into sub-intervals whose number n is a multiple of 3. BOOLE S RULE Putting n 4 in equation 2 and neglecting all differences of order higher than .

TÀI LIỆU MỚI ĐĂNG
41    192    5    06-01-2025
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.