TAILIEUCHUNG - Lecture Digital image processing - Lecture 16: Image enhancement

This chapter presents the following content: 1st and 2nd order derivatives, laplacian filter, unsharp masking and high-boost filtering, mask processing, linear smoothing operation, median filter, sharpening spatial filter. | Digital Image Processing CSC331 Image Enhancement 1 Summery of previous lecture Mask processing Linear smoothing operation Median filter Sharpening spatial filter 2 Todays lecture 1st and 2nd order derivatives Laplacian filter Unsharp masking and high-boost filtering 3 Smoothing linear filters with different mask size 4 5 Salt-and-pepper noise 6 Sharpening The term sharpening is referred to the techniques suited for enhancing the intensity transitions. In images, the borders between objects are perceived because of the intensity change: more crisp the intensity transitions, more sharp the image. The intensity transitions between adjacent pixels are related to the derivatives of the image. Hence, operators (possibly expressed as linear filters) able to compute the derivatives of a digital image are very interesting 7 Sharpening spatial filter By averaging over an image, then the image becomes blurred or the details in the image are removed. Now, this averaging operation is equivalent to integration operation. The opposite differentiation operation or derivative operations will make the image sharp. We need derivative operations 8 First derivative of an image Since the image is a discrete function, the traditional definition of derivative cannot be applied. Hence, a suitable operator have to be defined such that it satisfies the main properties of the first derivative: 1. it is equal to zero in the regions where the intensity is constant; 2. it is different from zero for an intensity transition; 3. it is constant on ramps where the intensity transition is constant. The natural derivative operator is the difference between the intensity of neighboring pixels (spatial differentiation). 9 Second derivative of an image This operator satisfies the following properties: 1. it is equal to zero where the intensity is constant; 2. it is different from zero at the begin of a step (or a ramp) of the intensity; 3. it is equal to zero on the constant slope ramps. 10 11 12 .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.