TAILIEUCHUNG - Suborbital graphs for the Atkin-Lehner group

We investigate suborbital graphs for an imprimitive action of the Atkin–Lehner group on a maximal subset of extended rational numbers on which a transitive action is also satisfied. Obtaining edge and some circuit conditions, we examine some combinatorial properties of these graphs. | Turk J Math (2017) 41: 235 – 243 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics doi: Research Article Suborbital graphs for the Atkin–Lehner group ∗ ¨ ˘ ¨ ur GULER, ¨ Tuncay KORO GLU , Bahadır Ozg¨ Zeynep S ¸ ANLI Department of Mathematics, Karadeniz Technical University, Turkey Received: • Accepted/Published Online: • Final Version: Abstract: We investigate suborbital graphs for an imprimitive action of the Atkin–Lehner group on a maximal subset of extended rational numbers on which a transitive action is also satisfied. Obtaining edge and some circuit conditions, we examine some combinatorial properties of these graphs. Key words: Fuchsian groups, Atkin–Lehner group, group action, suborbital graphs 1. Introduction The idea of a suborbital graph has been used mainly by finite group theorists. In [11], Jones et al. showed that this idea is also useful in the study of the modular group that is a finitely generated Fuchsian group and show that the well-known Farey graph is an example of a suborbital graph. Then similar studies were done for related finitely generated reader is referred to [2–5,8,9,11– 16] for some relevant previous work on suborbital graphs. Firstly, in [3], it was proved that the elliptic elements in Γ0 (n) correspond to circuits in the subgraph Fu,n of the same order and vice versa. This fact is important because it means that suborbital graphs might have a potential to clarify signature problems taking into account the order of elliptic elements are one of the invariants of signature. Note that it was seen that this relation is just provided unilaterally in [14]. Elliptic elements do not necessarily correspond to circuits of the same order. On the other hand, it is worth noting that these graphs give some number theoretical results about continued fractions and Fibonacci numbers as in [4,8,17]. In the present study, we will continue to .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.